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Exercise 1.1: McCulloch-Pitts Neural Network (3 Points)
Consider the McCulloch-Pitts ANN depicted in figure 1. Complete the truth table by specifying, for
all possible input combinations of x1, x2 and x3, the output of each neuron(A-F) and the output of
the network f .
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Figure 1: McCulloch-Pitts ANN (Exercise 1.1)

Solution

x1 x2 x3 A B C D E F f

0 0 0 0 1 0 1 0 1 1
1 0 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 1 1
1 1 0 1 1 0 1 0 1 1
0 1 1 0 1 1 1 1 1 1
1 0 1 0 0 0 0 0 1 1
1 1 1 1 1 0 1 0 1 1

Table 1: truth table

https://tinyurl.com/CI-WS2015-16


Exercise 1.2: Perceptron Classification (3 Points)
A class C ⊂ R2 contains all points marked yellow in figure 2. Please note that the area is only bounded
at the black lines.

Manually construct an ANN of perceptrons that decides whether an input vector (x, y)T ∈ R2 belongs
to C (i.e. is within the marked area) or not. State the reasons for your choice of weights and network
structure.
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Figure 2: Construct ANN that identifies the marked area (Exercise 1.2)

Solution
Possible logical expression for network: ((x ≥ 1) ∧ (−y ≥ −1)) ∧ ((−x ≥ −2) ∧ (y ≥ −2))

Exercise 1.3: Single-Layer Perceptron - Gradient method (8 Points)
Script ci1516-3.R implements the gradient method for batch learning in a Single-Layer Perceptron
(compare lecture 2). Implement the functions gradient(w,x,y) and err(w,x,y) that are missing in the code.
Function err(w,x,y) returns the number of classification errors made for input x with label vector y and
the perceptron weights w. Using the same parameters, function gradient(w,x,y) calculates the gradient
to update the weights of the perceptron.

Additionally:

1. Test the implementation on the data in files set1 .txt and set2 .txt a few times and with different
learning rates g. Describe and explain any trends in the graph that plots errors in each iteration
(titled Errors).

2. Lines 65 and 66 in the code calculate the values passed to the function panel.abline(a,b ,...) that
adds a line of the form y = a + b ∗ x to the plot titled Perceptron. This line represents the
separation threshold defined by the learned weights of the perceptron. Explain why.

3. In line 23 in the code, the weights of the perceptron are normalised. Explain the effect of the
normalisation on the number of errors and necessary iterations.

Solution

1. Short description of observations



• set1

– g = 0.1: Downward trend, non-monotonous

– g = 1: Oscillation. Reason: step size too large

– g = 0.01: Downward trend, but more iterations than g = 0.1. Reason: step-size could
be larger

• set2

– Number of errors jump for all g, only different size of jumps

– Reason: data in set2 not linearly seperable

2. For the seperation threshold, it holds that w1 + w2x1 + w3x2 = 0, with w1 = −θ. Thus:

w1 + w2x1 + w3x2 = 0

⇔x2 =
−w1

w3
+
−w2

w3
x1

⇔a =
−w1

w3
∧ b =

−w2

w3

3. Normalisation prevents a weight vector with high absolute values, which would slow down learn-
ing because the update is the sum of (comparably) low absolute values (true for g = 0.1). Not
normalising can reverse the effect of a learning rate that is too low (g = 0.001).

Exercise 1.4: Multi-Layer Perceptron - Backpropagation (6 Points)
Script ci1516-4.R implements the backpropagation algorithm introduced in the lecture (compare lec-
ture 2) for the ANN depicted in figure 3. Assume θ = 0 for all neurons.
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Figure 3: ANN structure (Exercise 1.4)

1. Implement the weight updates as suggested in line 22 in the script.

2. How would the computation of δz change if, instead of the function a(x) = 1
1+e−x , the function

a(x) = tanh(x) was used?

3. Describe and explain the trend in the graph that plots errors in each iteration (titled Errors).

Important: Note that the implementation is only supposed to work for the specific number of neurons
and network structure in figure 3. There is no need for a generalised implementation.

Solution

1. See script



2. The gradient changes. It holds that if a(x) = tanh(x), a′(x) = (1 − a2(x)). Therefore, the
derivative on slide 25, lecture 2 changes such that:

δf(w, u;x, z∗)

δujk
= 2[a(u′ky)− z∗k] · a′(u′ky) · yj

= 2[a(u′ky)− z∗k] · (1− a2(u′ky)) · yj
= 2[zk − z∗k] · (1− z2k) · yj = δz · yj

3. Error decreases, this is expected due to the combination of gradient descent and online learning.
Derivative decreases, too, due to smaller error signals.


