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Exercise 2.1: Radial Basis Function Nets (6 Points)

Implement an RBF network with Gaussian basis function in R. Alternatively, find, download, under-
stand and describe a public domain version. Use that implementation to model the data set given in
data.csv (first two columns input, third column class).

• Elaborate on your choice for the number of neurons q, the radii σ and the center ck.

• Visualise (in one or more plots):

– Φ(x; c) for all neuron center ck and ∀(x, y) ∈ [−2, 2]× [−2, 2]

– classification results and errors

• Using your visualisations, analyse your classification results and try to explain any shortcomings.

Exercise 2.2: Weights for RBF (8 Points)

The optimal weights w for an RBF net can be determined from the solution of the matrix equation
Pw = y via the pseudo inverse of P .

a) Show formally that the optimal weights can be determined via minimizing
‖Pw − y‖2 = (Pw − y)′(Pw − y)→ min!

Use differential calculus.

b) If the training examples lead to an ill-conditioned matrix P the numerical process can be made
more stable if we minimize the objective function
‖Pw − y‖2 + w′Dw→ min!,
where D = diag(d1, . . . , dq) is a diagonal matrix with positive diagonal entries di > 0.

Derive the expression for the optimal weights via differential calculus.

Solution (shortened version!)

a)

||Pw − y||2 = (Pw − y)T (Pw − y)

= wTP T pw − yTPw − P TwT y + yT y

= wTP T pw − 2wTP T y + yT y
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Figure 1: Learning patterns (Exercise 2.3)

Figure 2: Test patterns (Exercise 2.3)

δ

δw
||Pw − y||2 = 2P TPw − 2P T y

!
= 0

⇒ P TPw = P T y

⇒ w = (P TP )−1P T y

⇒ w = P+y

b)

||Pw − y||2 + wTDw = wTP T pw − 2wTP T y + yT y + wTDw

δ

δw
|Pw − y||2 + wTDw = wTP T pw − 2wTP T y + yT y + wTDw

!
= 0

2P TPw + 2Dw − 2P T y = 0

P TPw +Dw − P T y = 0

P T y = P TPw +Dw

P T y = (P TP +D)w

w = (P TP +D)−1P T y

Exercise 2.3: Hopfield Nets for Error Correction (6 Points)

Assume a Hopfield net with 9 neurons, aranged in a 3× 3 grid, which results in a weight matrix with
81 entries.

Using associative memory, we want to store two different patterns (visualised in figure 1) in the
network. The goal is the following: if a slighlty modified version of either pattern is fed to the network,
after a few iterations, the network displays the corresponding stored pattern, thus correcting the input.

Storing the patterns can be achieved by using the Hebb rule (equation 1) to initialise the network
weights. This way, the stored patterns are attractors (stable states) in the resulting energy landscape
and can thus be retrieved.

Let m be the number of patterns to be stored in the network and n be the number of neurons in the
network. xµi , with µ ∈ [1,m], k ∈ [1, n], is the state of neuron i (either 1 or -1) in pattern µ.

According to Hebb’s rule, the initial weights should then be:

Wij =
1

n

m∑
µ=1

xµi x
µ
j (1)

(For more background information, look up Hopfield Nets and Hebbian learning)



• Implement the Hopfield Net described above and store the patterns in figure 1 by initialising the
weights according to equation 1. Print the weight matrix.

• Now use the patterns depicted in figure 2 as input. In how many iterations does the network
reach a stable state? What pattern does it retrieve? Explain the network’s behaviour.

• What is the effect on the energy function if for each pattern µ a weight εµ ∈ R is factored into
the weight initialisation in equation 1, such that:

Wij =
1

n

m∑
µ=1

εµx
µ
i x

µ
j (2)


