Tutorial for

Introduction to Computational Intelligence in Winter 2015/16

Günter Rudolph, Vanessa Volz
Lecture website: https://tinyurl.com/CI-WS2015-16

Sheet 2, Block I

12 November 2015
Due date: 25 November 2015, 2pm
Discussion: 26/27 November 2015

Exercise 2.1: Radial Basis Function Nets (6 Points)

Implement an RBF network with Gaussian basis function in R. Alternatively, find, download, understand and describe a public domain version. Use that implementation to model the data set given in data.csv (first two columns input, third column class).

- Elaborate on your choice for the number of neurons q, the radii σ and the center c_{k}.
- Visualise (in one or more plots):
$-\Phi(x ; c)$ for all neuron center c_{k} and $\forall(x, y) \in[-2,2] \times[-2,2]$
- classification results and errors
- Using your visualisations, analyse your classification results and try to explain any shortcomings.

Exercise 2.2: Weights for RBF (8 Points)

The optimal weights \mathbf{w} for an RBF net can be determined from the solution of the matrix equation $P \mathbf{w}=\mathbf{y}$ via the pseudo inverse of P.
a) Show formally that the optimal weights can be determined via minimizing
$\|P \mathbf{w}-\mathbf{y}\|^{2}=(P \mathbf{w}-\mathbf{y})^{\prime}(P \mathbf{w}-\mathbf{y}) \rightarrow \min !$
Use differential calculus.
b) If the training examples lead to an ill-conditioned matrix P the numerical process can be made more stable if we minimize the objective function
$\|P \mathbf{w}-\mathbf{y}\|^{2}+\mathbf{w}^{\prime} D \mathbf{w} \rightarrow \min !$,
where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{q}\right)$ is a diagonal matrix with positive diagonal entries $d_{i}>0$.
Derive the expression for the optimal weights via differential calculus.

Solution (shortened version!)

a)

$$
\begin{aligned}
\|P w-y\|^{2} & =(P w-y)^{T}(P w-y) \\
& =w^{T} P^{T} p w-y^{T} P w-P^{T} w^{T} y+y^{T} y \\
& =w^{T} P^{T} p w-2 w^{T} P^{T} y+y^{T} y
\end{aligned}
$$

Figure 1: Learning patterns (Exercise 2.3)

- 0 ○
- $0 \quad 0$- 0
\circ ○
- $0 \quad 0$

Figure 2: Test patterns (Exercise 2.3)

$$
\begin{aligned}
\frac{\delta}{\delta w}\|P w-y\|^{2} & =2 P^{T} P w-2 P^{T} y \stackrel{!}{=} 0 \\
\Rightarrow P^{T} P w & =P^{T} y \\
\Rightarrow w & =\left(P^{T} P\right)^{-1} P^{T} y \\
\Rightarrow w & =P^{+} y
\end{aligned}
$$

b)

$$
\begin{aligned}
\|P w-y\|^{2}+w^{T} D w & =w^{T} P^{T} p w-2 w^{T} P^{T} y+y^{T} y+w^{T} D w \\
\left.\frac{\delta}{\delta w} \right\rvert\, P w-y \|^{2}+w^{T} D w & =w^{T} P^{T} p w-2 w^{T} P^{T} y+y^{T} y+w^{T} D w \stackrel{!}{=} 0 \\
2 P^{T} P w+2 D w-2 P^{T} y & =0 \\
P^{T} P w+D w-P^{T} y & =0 \\
P^{T} y & =P^{T} P w+D w \\
P^{T} y & =\left(P^{T} P+D\right) w \\
w & =\left(P^{T} P+D\right)^{-1} P^{T} y
\end{aligned}
$$

Exercise 2.3: Hopfield Nets for Error Correction (6 Points)

Assume a Hopfield net with 9 neurons, aranged in a 3×3 grid, which results in a weight matrix with 81 entries.

Using associative memory, we want to store two different patterns (visualised in figure 11) in the network. The goal is the following: if a slighlty modified version of either pattern is fed to the network, after a few iterations, the network displays the corresponding stored pattern, thus correcting the input.

Storing the patterns can be achieved by using the Hebb rule (equation 1) to initialise the network weights. This way, the stored patterns are attractors (stable states) in the resulting energy landscape and can thus be retrieved.

Let m be the number of patterns to be stored in the network and n be the number of neurons in the network. x_{i}^{μ}, with $\mu \in[1, m], k \in[1, n]$, is the state of neuron i (either 1 or -1) in pattern μ.
According to Hebb's rule, the initial weights should then be:

$$
\begin{equation*}
W_{i j}=\frac{1}{n} \sum_{\mu=1}^{m} x_{i}^{\mu} x_{j}^{\mu} \tag{1}
\end{equation*}
$$

(For more background information, look up Hopfield Nets and Hebbian learning)

- Implement the Hopfield Net described above and store the patterns in figure 1 by initialising the weights according to equation 1. Print the weight matrix.
- Now use the patterns depicted in figure 2 as input. In how many iterations does the network reach a stable state? What pattern does it retrieve? Explain the network's behaviour.
- What is the effect on the energy function if for each pattern μ a weight $\epsilon_{\mu} \in \mathbb{R}$ is factored into the weight initialisation in equation 1, such that:

$$
\begin{equation*}
W_{i j}=\frac{1}{n} \sum_{\mu=1}^{m} \epsilon_{\mu} x_{i}^{\mu} x_{j}^{\mu} \tag{2}
\end{equation*}
$$

