
Konstruktion von 
LCP-Arrays (ctd.)

und Suche in Suffix Arrays
WS14/15

Johannes Fischer

It remains to be shown how the LCP-array H can be constructed in O(n) time. Here, we
assume that we are given T and A, the text and the su�x array for T .

We will construct H in text order, which is also the order of the inverse su�x array A�1, the
latter defined by A�1[A[i]] = i for all 1 i n, which is easily computable from A in linear
time. In other words, we aim at filling H[A�1[i]] before H[A�1[i+ 1]], because in this case we
know that H cannot decrease too much, as shown next.

Going from su�x T i to T i+1, we see that the latter equals the former, but with the first
character ti truncated. Let h = H[i]. Then the su�x T j , j = A[A�1[i] � 1], has a longest
common prefix with T i of length h. So T i+1 has a longest common prefix with T j+1 of length
h � 1. But every su�x T k that is lexicographically between T j+1 and T i+1 must have a
longest common prefix with T j+1 that is at least h� 1 characters long (for otherwise T k would
not be in lexicographic order). In particular, the su�x right before T i+1 in A, which is su�x
TA[A�1

[i+1]�1], must share a common prefix with Si+1

of length at least h�1. Hence, H[A�1[i+
1]] � h� 1. We have thus proved the following:

Lemma 5. For all 1 i < n: H[A�1[i+ 1]] � H[A�1[i]]� 1.

This gives rise to the following elegant algorithm to construct H:

Algorithm 1: Linear-Time Construction of the LCP-Array

1 for i = 1, . . . , n do A�1[A[i]] i;
2 h 0, H[1] 0;
3 for i = 1, . . . , n do
4 if A�1[i] 6= 1 then
5 j A[A�1[i]� 1];
6 while ti+h = tj+h do h h+ 1;
7 H[A�1[i]] h;
8 h max{0, h� 1};
9 end

10 end

The linear running time follows because h starts and ends at 0, is always less than n and
decreased at most n times in line 8. Hence, the number of times where k is increased in line
6 is bounded by n, so there are at most 2n character comparisons in the whole algorithm. We
have proved:

Theorem 6. We can construct the LCP array for a text of length n in O(n) time.

4.6.1 Practical Improvements (*)

Let us do some algorithm engineering on the LCP-array construction algorithm! The problem
with this algorithm is its poor locality behavior, resulting in many potential cache misses (4n in
total). Our idea is now to rearrange the computations such that in the big for-loop accesses only
one array in a random access manner, whereas all other arrays are scanned sequentially. To this
end, we first compute a temporary array �[1, n] that at �[i] stores the lexicographic preceeding
su�x of T [i]. (This is exactly the su�x with whom we have to compare T [i] for longest common
prefix computation.) Further, in the for-loop we write the computed LCP-values in text order.
(This is exactly the order in which they are computed.) The resulting algorithm can be seen in
Alg. 2.

12

Algorithm 2: More Cache-E�cient Linear-Time Construction of the LCP-Array

1 �[n] A[n]; // assume that T is $-terminated, so A[1] = n
2 for i = 2, . . . , n do �[A[i]] A[i� 1]; // "with whom I want to be compared"

3 h 0;
4 for i = 1, . . . , n do
5 j �[i];
6 while ti+h = tj+h do h h+ 1;
7 H 0[i] h; // �[i] can be overwritten by H 0

(saves space)

8 h max{0, h� 1};
9 end

10 for i = 1, . . . , n do H[i] H 0[A[i]]; // put values back into suffix array order

In total, the algorithm now produces at most 3n cache misses (as opposed to 4n in Alg. 1).
The practical running time of Alg. 2 is reported to be 1.5 times faster than Alg. 1.

4.7 Searching in Su�x Arrays

4.7.1 Exact Searches

• G. Navarro, V. Mäkinen: Compressed Full-Text Indexes. ACM Computing Surveys 39(1),
Article Article No. 2, 2007. Section 3.3.

• E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013. Chapter 5.1.3.

We can use a plain su�x array A to search for a pattern P , using the ideas of binary search,
since the su�xes in A are sorted lexicographically and hence the occurrences of P in T form an
interval in A. The algorithm below performs two binary searches. The first search locates the
starting position s of P ’s interval in A, and the second search determines the end position r. A
counting query returns r�s+1, and a reporting query returns the numbersA[s], A[s+1], . . . , A[r].
Note that both while-loops in Alg. ?? make sure that either l is increased or r is decreased,

so they are both guaranteed to terminate. In fact, in the first while-loop, r always points
one position behind the current search interval, and r is decreased in case of equality (when
P = TA[q]...min{A[q]+m�1,n}). This makes sure that the first while-loop finds the leftmost position
of P in A. The second loop works symmetrically. Note further that in the second while-loop it
is enough to check for lexicographical equality, as the whole search is done in the interval of A
where all su�xes are lexicographically no less than P .

Theorem 7. The su�x array allows to answer counting queries in O(m log n) time, and re-
porting queries in O(m log n+ |OP |) time.

4.7.2 Approximate Searches

• Huynh, T. N., Hon, W. K., Lam, T. W., Sung, W. K.: Approximate string matching using
compressed su�x arrays. Theoretical Computer Science, 352(1), 240-249, 2006.

There are many variants of approximate string matching, both indexed and sequential (i.e.,
non-indexed). The easiest type of errors are mismatches: counting the number of non-equal
characters between two strings. This number is usually called the Hamming distance.

13

Suche in Suffix Arrays
(direkt - ohne Suffixbaum)

Algorithm 3: function SAsearch(P
1...m)

1 l 1; r n+ 1;
2 while l < r do

3 q b l+r
2

c;
4 if P >

lex

TA[q]...min{A[q]+m�1,n} then

5 l q + 1;
6 else
7 r q;
8 end

9 end
10 s l; l��; r n;
11 while l < r do

12 q d l+r
2

e;
13 if P =

lex

TA[q]...min{A[q]+m�1,n} then

14 l q;
15 else
16 r q � 1;
17 end

18 end
19 return [s, r];

Smaller distances are usually achieved by the edit distance: counting the minimum number
of edit operations (insertions, deletions, substitutions) to transform one string into the other.
For a given text T of length n and 1 i n, we define ed(P, i) as the minimum number of
such edit operations on P such that the modified P matches (exactly) at position i in T .

Our algorithmic idea is now to modify the pattern at each possible position and search each of
the modified patterns in T , using the su�x array A of T . We focus on the case with one error,
but the idea can be generalized to more errors. Since there are exactly m+m(��1)+(m+1)�
possible modifications (deletions, substitutions, insertions), this would take O(m2� log n) time
if we were to use the plain O(m log n) su�x array search algorithm for each modified pattern.

To speed up the search, we need a small lemma, which allows us to “paste” to su�x arrays
intervals together, faster than starting the search from scratch:

Lemma 8. Let [s
1

, e
1

] be the su�x array interval corresponding to pattern P
1

, and [s
2

, e
2

]
the su�x array interval corresponding to pattern P

2

. Then the su�x array interval for the
concatenation P

1

P
2

can be found in O(log n) time.

Proof. We need to find the sub-range [s, e] of [s
1

, e
1

] such that the su�xes TA[i], s i e,
are exactly the su�xes that are prefixed by P

1

P
2

. Let s i e. If TA[i] continues with P
2

after the initial m := |P
1

| characters, then

s
2

 A�1[A[j] +m
1

] e
2

,

and vice versa. Hence s is the smallest value in [s
1

, e
1

] such that the above inequality holds,
and can be found by a binary search in O(log n) time. The arguments for e are symmetric.

Using this lemma, the algorithm now works as follows.
The running time is now O(m� log n); for constant alphabets, this is O(m log n), which is not

too bad. As shown, the algorithm computes all positions i with ed(P, i) = 1 (lines 4, 7, and 8).

14

Algorithm 3: function SAsearch(P
1...m)

1 l 1; r n+ 1;
2 while l < r do

3 q b l+r
2

c;
4 if P >

lex

TA[q]...min{A[q]+m�1,n} then

5 l q + 1;
6 else
7 r q;
8 end

9 end
10 s l; l��; r n;
11 while l < r do

12 q d l+r
2

e;
13 if P =

lex

TA[q]...min{A[q]+m�1,n} then

14 l q;
15 else
16 r q � 1;
17 end

18 end
19 return [s, r];

Smaller distances are usually achieved by the edit distance: counting the minimum number
of edit operations (insertions, deletions, substitutions) to transform one string into the other.
For a given text T of length n and 1 i n, we define ed(P, i) as the minimum number of
such edit operations on P such that the modified P matches (exactly) at position i in T .
Our algorithmic idea is now to modify the pattern at each possible position and search each of

the modified patterns in T , using the su�x array A of T . We focus on the case with one error,
but the idea can be generalized to more errors. Since there are exactly m+m(��1)+(m+1)�
possible modifications (deletions, substitutions, insertions), this would take O(m2� log n) time
if we were to use the plain O(m log n) su�x array search algorithm for each modified pattern.
To speed up the search, we need a small lemma, which allows us to “paste” to su�x arrays

intervals together, faster than starting the search from scratch:

Lemma 8. Let [s
1

, e
1

] be the su�x array interval corresponding to pattern P
1

, and [s
2

, e
2

]
the su�x array interval corresponding to pattern P

2

. Then the su�x array interval for the
concatenation P

1

P
2

can be found in O(log n) time.

Proof. We need to find the sub-range [s, e] of [s
1

, e
1

] such that the su�xes TA[i], s i e,
are exactly the su�xes that are prefixed by P

1

P
2

. Let s i e. If TA[i] continues with P
2

after the initial m := |P
1

| characters, then

s
2

 A�1[A[j] +m
1

] e
2

,

and vice versa. Hence s is the smallest value in [s
1

, e
1

] such that the above inequality holds,
and can be found by a binary search in O(log n) time. The arguments for e are symmetric.
Using this lemma, the algorithm now works as follows.
The running time is now O(m� log n); for constant alphabets, this is O(m log n), which is not

too bad. As shown, the algorithm computes all positions i with ed(P, i) = 1 (lines 4, 7, and 8).

14

Schnellere Suche:
m⋅lg(n) → m+lg(n)

A =
l q r

⇢
�

P1
·
·
·
·
P�

P1
·
·
P⇢

Übereinstimmung zwischen Muster P
und dem Suffix T[A[l]..n]

Annahme:
λ>ρ

(sonst
vertausche)

1. Fall: ξ>λ

A =
l q r

↵↵
�

⇠
⇢

TA[l]+�

=
TA[q]+�

�

⇒ setze l ←q ohne weitere Vergleiche!

 LCP zwischen 
T[A[l]..n] und T[A[q]..n]

2. Fall: ξ=λ

A =
l q r

↵↵⇠ = �
⇢

Vergleiche wie bei der normalen binären Suche

3. Fall: ξ<λ

A =
l q r

↵↵
�

⇠ ⇢
⇠

P⇠+1
6=

TA[q]+⇠

⇒ setze r ←q und ρ←ξ ohne weitere Vergleiche!

