Konstruktion von LCP-Arrays (ctd.)
 und Suche in Suffix Arrays

WS14/15
Johannes Fischer

```
Algorithm 1: Linear-Time Construction of the LCP-Array
\(\mathbf{1}\) for \(i=1, \ldots, n\) do \(A^{-1}[A[i]] \leftarrow i\);
\(2 h \leftarrow 0, H[1] \leftarrow 0\);
3 for \(i=1, \ldots, n\) do
\(4 \quad\) if \(A^{-1}[i] \neq 1\) then
\(j \leftarrow A\left[A^{-1}[i]-1\right] ;\)
while \(t_{i+h}=t_{j+h}\) do \(h \leftarrow h+1\);
\(H\left[A^{-1}[i]\right] \leftarrow h ;\)
\(h \leftarrow \max \{0, h-1\} ;\)
    end
10 end
```

```
Algorithm 2: More Cache-Efficient Linear-Time Construction of the LCP-Array
\(1 \Phi[n] \leftarrow A[n] ; \quad / /\) assume that \(T\) is \(\$\)-terminated, so \(A[1]=n\)
2 for \(i=2, \ldots, n\) do \(\Phi[A[i]] \leftarrow A[i-1] ; \quad / /\) "with whom I want to be compared"
\(3 h \leftarrow 0\);
4 for \(i=1, \ldots, n\) do
\(5 \quad j \leftarrow \Phi[i]\);
\(6 \quad\) while \(t_{i+h}=t_{j+h}\) do \(h \leftarrow h+1\);
\(7 \quad H^{\prime}[i] \leftarrow h ; \quad / / \Phi[i]\) can be overwritten by \(H^{\prime}\) (saves space)
\(8 \quad h \leftarrow \max \{0, h-1\}\);
9 end
10 for \(i=1, \ldots, n\) do \(H[i] \leftarrow H^{\prime}[A[i]] ; \quad / /\) put values back into suffix array order
```

Suche in Suffix Arrays (direkt - ohne Suffixbaum)

```
Algorithm 3: function SAsearch( ( }\mp@subsup{P}{1..m}{}
    1 l}\leftarrow1;r\leftarrown+1
    2 \text { while } l < r \text { do}
    3 | q \lfloor\frac{l+r}{2}\rfloor;
```



```
        l\leftarrowq+1;
        else
        r}\leftarrowq
        end
    end
10}s\leftarrowl;l--;r\leftarrown
1 1 ~ w h i l e ~ l < r ~ d o
12 | & \lceil\frac{l+r}{2}\rceil;
13 if P}=\mp@subsup{l}{lex}{}\mp@subsup{T}{A[q]\ldotsmin{A[q]+m-1,n}}{}\mathrm{ then
14 | l l q;
15 else
16 | r <q-1;
17 end
18}\mathrm{ end
19 return [s,r];
```

$$
\begin{aligned}
& \text { Schnellere Suche: } \\
& m \cdot \lg (n) \rightarrow m+\lg (n)
\end{aligned}
$$

Annahme:
$\lambda>\rho$

Übereinstimmung zwischen Muster P und dem Suffix T[A[l]..n]

(sonst vertausche)

1. Fall: $\xi>\lambda$

LCP zwischen
$\mathrm{T}[\mathrm{A}[1] . \mathrm{n}]$ und $\mathrm{T}[\mathrm{A}[q] . . \mathrm{n}]$
\Rightarrow setze I $\leftarrow \mathrm{q}$ ohne weitere Vergleiche!

2. Fall: $\xi=\lambda$

Vergleiche wie bei der normalen binären Suche

3. Fall: $\xi<\lambda$

\Rightarrow setze $r \leftarrow q$ und $\rho \leftarrow \xi$ ohne weitere Vergleiche!

