
Semi-separated pair decomposition &

low-quality approximate nearest neighbors

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can
(a) Find the O(1) cells of Gα that could contain nn(q),

where α = ‖p− q‖ rounded down to the next power 2−i

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can
(a) Find the O(1) cells of Gα that could contain nn(q),

where α = ‖p− q‖ rounded down to the next power 2−i

(b) Use (1.), starting from these cells

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can
(a) Find the O(1) cells of Gα that could contain nn(q),

where α = ‖p− q‖ rounded down to the next power 2−i

(b) Use (1.), starting from these cells
Now, 1/r = O(n) relative to α = O(nr)

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns (1 + ε)-approximate nearest neighbor of q in
time O(1/εd + log(1/r)) time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can
(a) Find the O(1) cells of Gα that could contain nn(q),

where α = ‖p− q‖ rounded down to the next power 2−i

(b) Use (1.), starting from these cells
Now, 1/r = O(n) relative to α = O(nr)

This requires O(n)-ANN→ today

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by
1/ε-well-separated pairs of point sets {A,B}:

d(A,B)r

r
A

B

with r ≤ εd(A,B)

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by
1/ε-well-separated pairs of point sets {A,B}:

d(A,B)r

r
A

B

with r ≤ εd(A,B)

good: O(n) pairs are enough (size of WSPD)

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by
1/ε-well-separated pairs of point sets {A,B}:

d(A,B)r

r
A

B

with r ≤ εd(A,B)

good: O(n) pairs are enough (size of WSPD)

but: might require
∑
i |Ai|+ |Bi| = Θ(n2)

(weight of WSPD)

Overview

Semi-separated pair decomposition (SSPD)

Ring separator tree: n-semi-separated pair decomposition

Ring separator tree: O(n)-ANN

(1/ε)-semi-separated pair decomposition

Semi-Separated Pairs

1/ε-well-separated pair: max(rA, rB) ≤ εd(A,B)

d(A,B)

rA

rB

B

Semi-Separated Pairs

1/ε-well-separated pair: max(rA, rB) ≤ εd(A,B)

1/ε-semi-separated pair: min(rA, rB) ≤ εd(A,B)

d(A,B)

rA

rB

B

Semi-Separated Pairs

1/ε-well-separated pair: max(rA, rB) ≤ εd(A,B)

1/ε-semi-separated pair: min(rA, rB) ≤ εd(A,B)

d(A,B)

rA

A

B

Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

Computing a ring separator

1. Compute b = b(p, α): 2-approximation of smallest ball containing n/c1 points
(c1 to be determined later)

Computing a ring separator

1. Compute b = b(p, α): 2-approximation of smallest ball containing n/c1 points
(c1 to be determined later)

Computing a ring separator

1. Compute b = b(p, α): 2-approximation of smallest ball containing n/c1 points
(c1 to be determined later)

2. Hash the points in b(p, e · α) \ b into rings ri := bi \ bi−1, where
bi := b(p, r(1 + 1/n)i, b0 = b

Computing a ring separator

1. Compute b = b(p, α): 2-approximation of smallest ball containing n/c1 points
(c1 to be determined later)

2. Hash the points in b(p, e · α) \ b into rings ri := bi \ bi−1, where
bi := b(p, r(1 + 1/n)i, b0 = b

3. Find empty ring ri and return bi−1

Computing a ring separator

1. Compute b = b(p, α): 2-approximation of smallest ball containing n/c1 points
(c1 to be determined later)

2. Hash the points in b(p, e · α) \ b into rings ri := bi \ bi−1, where
bi := b(p, r(1 + 1/n)i, b0 = b

3. Find empty ring ri and return bi−1

Quiz What is the (expected) worst-case running time of the algorithm?

A Θ(n)

B Θ(n log n)

C Θ(n2)

Computing a ring separator

1. Compute b = b(p, α): 2-approximation of smallest ball containing n/c1 points
(c1 to be determined later)

2. Hash the points in b(p, e · α) \ b into rings ri := bi \ bi−1, where
bi := b(p, r(1 + 1/n)i, b0 = b

3. Find empty ring ri and return bi−1

Quiz What is the (expected) worst-case running time of the algorithm?

A Θ(n)

B Θ(n log n)

C Θ(n2)

Correctness

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

b(p, 8α) can be covered by c = O(1) disks of radius α/2

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

Choose: c1 := 3c

b(p, 8α) can be covered by c = O(1) disks of radius α/2

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

Choose: c1 := 3c

b(p, 8α) contains≤ c n3c < n/2 points

b(p, 8α) can be covered by c = O(1) disks of radius α/2

>n/2

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

Choose: c1 := 3c

b(p, 8α) contains≤ c n3c < n/2 points

ri := bi \ bi−1, are n ranges in
bn = b(p, α(1 + 1/n)n) ⊂ b(p, αe) ⊂ b(p, 8α)

b(p, 8α) can be covered by c = O(1) disks of radius α/2

>n/2

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

Choose: c1 := 3c

b(p, 8α) contains≤ c n3c < n/2 points

ri := bi \ bi−1, are n ranges in
bn = b(p, α(1 + 1/n)n) ⊂ b(p, αe) ⊂ b(p, 8α)

b(p, 8α) can be covered by c = O(1) disks of radius α/2

>n/2

pigeonhole principle: There is an empty range ri

Correctness

b

≤ n/c1
α αe 8α

b = b(p, α) 2-approx. smallest ball containing n/c1 points
⇒ no disk of radius r = α/2 contains more than n/c1 points

Choose: c1 := 3c

b(p, 8α) contains≤ c n3c < n/2 points

ri := bi \ bi−1, are n ranges in
bn = b(p, α(1 + 1/n)n) ⊂ b(p, αe) ⊂ b(p, 8α)

b(p, 8α) can be covered by c = O(1) disks of radius α/2

>n/2

pigeonhole principle: There is an empty range ri
bi−1 contains n/c1 points, ri empty,
> n/2 points outside of ball of twice the radius

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T with corresponding subset Pv ⊂ P is associated with a ‘ring’ that

separates the points of Pv into two sets

t

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T with corresponding subset Pv ⊂ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it

t

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T with corresponding subset Pv ⊂ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it

• The interior of the ring is of width t

t

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T with corresponding subset Pv ⊂ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it

• The interior of the ring is of width t

t

Apply algorithm for ring separator recursively

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:
• Every node v ∈ T with corresponding subset Pv ⊂ P is associated with a ‘ring’ that

separates the points of Pv into two sets
• The interior of the ring has no points inside it

• The interior of the ring is of width t

t

Apply algorithm for ring separator recursively

Result: A 1
n -ring separator tree

A n-semi-separated pair decomposition
of weight Θ(n log n)

Overview

Semi-separated pair decomposition (SSPD)

Ring separator tree: n-semi-separated pair decomposition

Ring separator: O(n)-ANN

(1/ε)-semi-separated pair decomposition

Ring Separator Tree

For every node v we ensure:

There is a ball bv = b(cv, rv) s.t. all points of P in
v = Pv ∩ bv are in one child of v

(the inner child)

t

All other points of Pv are outside b(cv, (1 + t)rv)
and stored in the other child (the outer child)

Ring Separator Tree

For every node v we ensure:

There is a ball bv = b(cv, rv) s.t. all points of P in
v = Pv ∩ bv are in one child of v

(the inner child)

t

All other points of Pv are outside b(cv, (1 + t)rv)
and stored in the other child (the outer child)

repv

Store an arbitrary repv ∈ P in
v in v

ANN search procedure

Given query point q:

trepv

q

ANN search procedure

Given query point q:
v = root of T , r =∞

trepv

q

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)

trepv

q
r

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv

trepv

q
r

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

trepv

q
r

ANN search procedure

t

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q
r

ANN search procedure

t

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q
r

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q

ANN search procedure

Given query point q:
v = root of T , r =∞
while v is not a leaf:
r = min(r, ‖q − repv‖)
rmid = (1 + t/2)rv
if ‖q − cv‖ ≤ rmid then
v = inner child of v

else
v = outer child of v

return r

q

Intuition of correctness

trepv

Case distinction:

Intuition of correctness

trepv

Case distinction:
1.) q in bv

q

Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)

q

Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)

q
2.) q outside enlarged bv

Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)

q
2.) q outside enlarged bv
→ points inside bv all have approximately
the same distance to q

Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)

q
2.) q outside enlarged bv
→ points inside bv all have approximately
the same distance to q
→ sufficient to test 1 point in bv : repv

Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)
2.) q outside enlarged bv
→ points inside bv all have approximately
the same distance to q
→ sufficient to test 1 point in bv : repv

q

3.) q in ring

Intuition of correctness

trepv

Case distinction:
1.) q in bv → points outside of bv too far away

(to invalidate repv as 1/t-ANN)
2.) q outside enlarged bv
→ points inside bv all have approximately
the same distance to q
→ sufficient to test 1 point in bv : repv

q

3.) q in ring
1.) or 2.) applies with slightly worse bounds

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Case 1: nn(q) ∈ Pwout but ‖q − cw‖ ≤ rw(1 + 1/t)

trepw

q

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Case 1: nn(q) ∈ Pwout but ‖q − cw‖ ≤ rw(1 + 1/t)

trepw

q

‖q−repw‖
‖q−nn(q)‖ ≤

(2+t/2)rw
(t/2)rw

≤ 1 + 4/t

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Case 1: nn(q) ∈ Pwout but ‖q − cw‖ ≤ rw(1 + 1/t)

‖q−repw‖
‖q−nn(q)‖ ≤

(2+t/2)rw
(t/2)rw

≤ 1 + 4/t

Case 2: nn(q) ∈ Pwin but ‖q − cw‖ ≥ rw(1 + 1/t)

trepw

q

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Case 1: nn(q) ∈ Pwout but ‖q − cw‖ ≤ rw(1 + 1/t)

‖q−repw‖
‖q−nn(q)‖ ≤

(2+t/2)rw
(t/2)rw

≤ 1 + 4/t

Case 2: nn(q) ∈ Pwin but ‖q − cw‖ ≥ rw(1 + 1/t)

trepw

q

‖q−repw‖
‖q−nn(q)‖ ≤

‖q−nn(q)‖+‖nn(q)−repw‖
‖q−nn(q)‖

Correctness

The algorithm finds a (1 + 4/t)-ANN.

Node w of T : Last node on search path such that nn(q) ∈ Pw .

Case 1: nn(q) ∈ Pwout but ‖q − cw‖ ≤ rw(1 + 1/t)

‖q−repw‖
‖q−nn(q)‖ ≤

(2+t/2)rw
(t/2)rw

≤ 1 + 4/t

Case 2: nn(q) ∈ Pwin but ‖q − cw‖ ≥ rw(1 + 1/t)

trepw

q

‖q−repw‖
‖q−nn(q)‖ ≤

‖q−nn(q)‖+‖nn(q)−repw‖
‖q−nn(q)‖

≤ 1 + 2rw
(t/2)rw

= 1 + 4/t

Overview

Semi-separated pair decomposition (SSPD)

Ring separator: n-semi-separated pair decomposition

Ring separator tree: O(n)-ANN

(1/ε)-semi-separated pair decomposition – brief sketch

(1/ε)-Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

(1/ε)-Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

Pin = P ∩ b, Pfar = P \ b(p, 2r/ε)
Pout = P \ (Pin ∪ Pfar)

(1/ε)-Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

Pin = P ∩ b, Pfar = P \ b(p, 2r/ε)
Pout = P \ (Pin ∪ Pfar)

1. Pin, Pfar semi-separated
2. recurse on Pin, Pin

(1/ε)-Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

Pin = P ∩ b, Pfar = P \ b(p, 2r/ε)
Pout = P \ (Pin ∪ Pfar)

1. Pin, Pfar semi-separated
2. recurse on Pin, Pin
3. recurse on P \ Pin, P \ Pin

(1/ε)-Semi-Separated Pairs

d(A,B)

rA

A

B

ring separator:

• ball b = b(p, r) containing≥ n/c1 points
• no point in b(p, r(1 + 1/n)) \ b
• ≥ n/c2 points outside b(p, 2r)

Pin = P ∩ b, Pfar = P \ b(p, 2r/ε)
Pout = P \ (Pin ∪ Pfar)

1. Pin, Pfar semi-separated
2. recurse on Pin, Pin
3. recurse on P \ Pin, P \ Pin
difficult: 4. Pin, Pout

Dealing with Pin, Pout (sketch)

r

r/n

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

snap points to a grid Gα with α = ε`/10

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

snap points to a grid Gα with α = ε`/10

Use WSPD algorithm for bounded spread to
compute WSPs with A ⊂ Pin and B ⊂ Pout

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

snap points to a grid Gα with α = ε`/10

Use WSPD algorithm for bounded spread to
compute WSPs with A ⊂ Pin and B ⊂ Pout

• grid size: O(n/ε2)

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

snap points to a grid Gα with α = ε`/10

Use WSPD algorithm for bounded spread to
compute WSPs with A ⊂ Pin and B ⊂ Pout

• grid size: O(n/ε2)

• levels in quadtree: O(log(n/ε2))
→ # pairs = O(n log n) (low weight)

Dealing with Pin, Pout (sketch)

r

r/n

diam(Pin ∪ Pout) ≤ 2r/ε

` := minp∈Pin,q∈Pout ‖p− q‖ ≥ r/n

snap points to a grid Gα with α = ε`/10

Use WSPD algorithm for bounded spread to
compute WSPs with A ⊂ Pin and B ⊂ Pout

• grid size: O(n/ε2)

• levels in quadtree: O(log(n/ε2))
→ # pairs = O(n log n) (low weight)

• snapping: since ` ≥ r/n distances between p ∈ Pin
and q ∈ Pout approximately stay the same.

Summary

(1/ε)-Semi-separated pair decomposition (SSPD)

min(rA, rB) ≤ εd(A,B)

Summary

(1/ε)-Semi-separated pair decomposition (SSPD)

min(rA, rB) ≤ εd(A,B)

Ring separator tree: n-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c, r) s.t. dist(A,P \A) ≥ r/n

Summary

(1/ε)-Semi-separated pair decomposition (SSPD)

min(rA, rB) ≤ εd(A,B)

Ring separator tree: n-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c, r) s.t. dist(A,P \A) ≥ r/n

Ring separator tree: O(n)-ANN
data structure of size O(n) computed in O(n log n) time,
which gives n-ANN in O(log n) time

Summary

(1/ε)-Semi-separated pair decomposition (SSPD)

min(rA, rB) ≤ εd(A,B)

Ring separator tree: n-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c, r) s.t. dist(A,P \A) ≥ r/n

Ring separator tree: O(n)-ANN
data structure of size O(n) computed in O(n log n) time,
which gives n-ANN in O(log n) time

(1/ε)-semi-separated pair decomposition
n-ring separator + snap to grid + WSPD

