Semi-separated pair decomposition \&

low-quality approximate nearest neighbors

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$

Problem: r can be arbitrary small.

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$ Problem: r can be arbitrary small.
2. If we can compute an $O(n)$-ANN p, then we can

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$

Problem: r can be arbitrary small.

2. If we can compute an $O(n)$-ANN p, then we can (a) Find the $O(1)$ cells of G_{α} that could contain $n n(q)$, where $\alpha=\|p-q\|$ rounded down to the next power 2^{-i}

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$

Problem: r can be arbitrary small.

2. If we can compute an $O(n)$-ANN p, then we can (a) Find the $O(1)$ cells of G_{α} that could contain $n n(q)$, where $\alpha=\|p-q\|$ rounded down to the next power 2^{-i}

(b) Use (1.), starting from these cells

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$

Problem: r can be arbitrary small.

2. If we can compute an $O(n)$-ANN p, then we can
(a) Find the $O(1)$ cells of G_{α} that could contain $n n(q)$,
 where $\alpha=\|p-q\|$ rounded down to the next power 2^{-i}
(b) Use (1.), starting from these cells

$$
\text { Now, } 1 / r=O(n) \text { relative to } \alpha=O(n r)
$$

Motivation: low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1+\varepsilon)$-approximate nearest neighbor of q in time $O\left(1 / \varepsilon^{d}+\log (1 / r)\right)$ time, where $r=d(q, n n(q))$

Problem: r can be arbitrary small.

2. If we can compute an $O(n)$-ANN p, then we can
(a) Find the $O(1)$ cells of G_{α} that could contain $n n(q)$,
 where $\alpha=\|p-q\|$ rounded down to the next power 2^{-i}
(b) Use (1.), starting from these cells

$$
\text { Now, } 1 / r=O(n) \text { relative to } \alpha=O(n r)
$$

This requires $O(n)$-ANN \rightarrow today

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by $1 / \varepsilon$-well-separated pairs of point sets $\{A, B\}$:

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by $1 / \varepsilon$-well-separated pairs of point sets $\{A, B\}$:

good: $O(n)$ pairs are enough (size of WSPD)

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by $1 / \varepsilon$-well-separated pairs of point sets $\{A, B\}$:

good: $O(n)$ pairs are enough (size of WSPD)
but: might require $\sum_{i}\left|A_{i}\right|+\left|B_{i}\right|=\Theta\left(n^{2}\right)$ (weight of WSPD)

Overview

Semi-separated pair decomposition (SSPD)
Ring separator tree: n-semi-separated pair decomposition
Ring separator tree: $O(n)$-ANN
$(1 / \varepsilon)$-semi-separated pair decomposition

Semi-Separated Pairs

$1 / \varepsilon$-well-separated pair: $\max \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)$

Semi-Separated Pairs

$1 / \varepsilon$-well-separated pair: $\max \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)$
$1 / \varepsilon$-semi-separated pair: $\min \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)$

Semi-Separated Pairs

$1 / \varepsilon$-well-separated pair: $\max \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)$
$1 / \varepsilon$-semi-separated pair: $\min \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)$

Semi-Separated Pairs

ring separator:

- ball $b=b(p, r)$ containing $\geq n / c_{1}$ points
- no point in $b(p, r(1+1 / n)) \backslash b$
- $\geq n / c_{2}$ points outside $b(p, 2 r)$

Computing a ring separator

1. Compute $b=b(p, \alpha)$: 2-approximation of smallest ball containing n / c_{1} points (c_{1} to be determined later)

Computing a ring separator

1. Compute $b=b(p, \alpha)$: 2-approximation of smallest ball containing n / c_{1} points (c_{1} to be determined later)

Computing a ring separator

1. Compute $b=b(p, \alpha)$: 2-approximation of smallest ball containing n / c_{1} points (c_{1} to be determined later)
2. Hash the points in $b(p, e \cdot \alpha) \backslash b$ into rings $r_{i}:=b_{i} \backslash b_{i-1}$, where $b_{i}:=b\left(p, r(1+1 / n)^{i}, b_{0}=b\right.$

Computing a ring separator

1. Compute $b=b(p, \alpha)$: 2-approximation of smallest ball containing n / c_{1} points (c_{1} to be determined later)
2. Hash the points in $b(p, e \cdot \alpha) \backslash b$ into rings $r_{i}:=b_{i} \backslash b_{i-1}$, where $b_{i}:=b\left(p, r(1+1 / n)^{i}, b_{0}=b\right.$
3. Find empty ring r_{i} and return b_{i-1}

Computing a ring separator

1. Compute $b=b(p, \alpha)$: 2-approximation of smallest ball containing n / c_{1} points (c_{1} to be determined later)
2. Hash the points in $b(p, e \cdot \alpha) \backslash b$ into rings $r_{i}:=b_{i} \backslash b_{i-1}$, where $b_{i}:=b\left(p, r(1+1 / n)^{i}, b_{0}=b\right.$
3. Find empty ring r_{i} and return b_{i-1}

Quiz What is the (expected) worst-case running time of the algorithm?
A $\Theta(n)$
B $\Theta(n \log n)$
C $\Theta\left(n^{2}\right)$

Computing a ring separator

1. Compute $b=b(p, \alpha)$: 2-approximation of smallest ball containing n / c_{1} points (c_{1} to be determined later)
2. Hash the points in $b(p, e \cdot \alpha) \backslash b$ into rings $r_{i}:=b_{i} \backslash b_{i-1}$, where $b_{i}:=b\left(p, r(1+1 / n)^{i}, b_{0}=b\right.$
3. Find empty ring r_{i} and return b_{i-1}

Quiz What is the (expected) worst-case running time of the algorithm?
A $\Theta(n)$
B $\Theta(n \log n)$
C $\Theta\left(n^{2}\right)$

Correctness

Correctness

$b=b(p, \alpha)$ 2-approx. smallest ball containing n / c_{1} points

Correctness

$b=b(p, \alpha) 2$-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points

Correctness

$b=b(p, \alpha)$ 2-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points $b(p, 8 \alpha)$ can be covered by $c=O(1)$ disks of radius $\alpha / 2$

Correctness

$b=b(p, \alpha)$ 2-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points $b(p, 8 \alpha)$ can be covered by $c=O(1)$ disks of radius $\alpha / 2$

Choose: $c_{1}:=3 c$

Correctness

$b=b(p, \alpha)$ 2-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points $b(p, 8 \alpha)$ can be covered by $c=O(1)$ disks of radius $\alpha / 2$
Choose: $c_{1}:=3 c$
$b(p, 8 \alpha)$ contains $\leq c \frac{n}{3 c}<n / 2$ points

Correctness

$b=b(p, \alpha) 2$-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points
$b(p, 8 \alpha)$ can be covered by $c=O(1)$ disks of radius $\alpha / 2$
Choose: $c_{1}:=3 c$
$b(p, 8 \alpha)$ contains $\leq c \frac{n}{3 c}<n / 2$ points

$r_{i}:=b_{i} \backslash b_{i-1}$, are n ranges in
$b_{n}=b\left(p, \alpha(1+1 / n)^{n}\right) \subset b(p, \alpha e) \subset b(p, 8 \alpha)$

Correctness

$b=b(p, \alpha) 2$-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points
$b(p, 8 \alpha)$ can be covered by $c=O(1)$ disks of radius $\alpha / 2$
Choose: $c_{1}:=3 c$
$b(p, 8 \alpha)$ contains $\leq c \frac{n}{3 c}<n / 2$ points

$r_{i}:=b_{i} \backslash b_{i-1}$, are n ranges in
$b_{n}=b\left(p, \alpha(1+1 / n)^{n}\right) \subset b(p, \alpha e) \subset b(p, 8 \alpha)$
pigeonhole principle: There is an empty range r_{i}

Correctness

$b=b(p, \alpha)$ 2-approx. smallest ball containing n / c_{1} points
\Rightarrow no disk of radius $r=\alpha / 2$ contains more than n / c_{1} points
$b(p, 8 \alpha)$ can be covered by $c=O(1)$ disks of radius $\alpha / 2$
Choose: $c_{1}:=3 c$
$b(p, 8 \alpha)$ contains $\leq c \frac{n}{3 c}<n / 2$ points

$r_{i}:=b_{i} \backslash b_{i-1}$, are n ranges in
$b_{n}=b\left(p, \alpha(1+1 / n)^{n}\right) \subset b(p, \alpha e) \subset b(p, 8 \alpha)$
pigeonhole principle: There is an empty range r_{i}
b_{i-1} contains n / c_{1} points, r_{i} empty,
$>n / 2$ points outside of ball of twice the radius

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_{v} \subset P$ is associated with a 'ring' that separates the points of P_{v} into two sets

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_{v} \subset P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_{v} \subset P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width t

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_{v} \subset P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width t

Apply algorithm for ring separator recursively

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_{v} \subset P$ is associated with a 'ring' that separates the points of P_{v} into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width t

Apply algorithm for ring separator recursively
Result: A $\frac{1}{n}$-ring separator tree
A n-semi-separated pair decomposition of weight $\Theta(n \log n)$

Overview

Semi-separated pair decomposition (SSPD)
Ring separator tree: n-semi-separated pair decomposition
Ring separator: $O(n)$-ANN
$(1 / \varepsilon)$-semi-separated pair decomposition

Ring Separator Tree

For every node v we ensure:
There is a ball $b_{v}=b\left(c_{v}, r_{v}\right)$ s.t. all points of $P_{v}^{\text {in }}=P_{v} \cap b_{v}$ are in one child of v (the inner child)

All other points of P_{v} are outside $b\left(c_{v},(1+t) r_{v}\right)$ and stored in the other child (the outer child)

Ring Separator Tree

For every node v we ensure:
There is a ball $b_{v}=b\left(c_{v}, r_{v}\right)$ s.t. all points of $P_{v}^{\text {in }}=P_{v} \cap b_{v}$ are in one child of v (the inner child)

All other points of P_{v} are outside $b\left(c_{v},(1+t) r_{v}\right)$ and stored in the other child (the outer child)

Store an arbitrary $r e p_{v} \in P_{v}^{\text {in }}$ in v

ANN search procedure

Given query point q :

ANN search procedure

Given query point q :
$v=\operatorname{root}$ of $T, r=\infty$

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
r=\min \left(r,\left\|q-r e p_{v}\right\|\right)
$$

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v}
\end{aligned}
$$

ANN search procedure

Given query point q :
$v=\operatorname{root}$ of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else }
\end{aligned}
$$

$v=$ outer child of v
return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

ANN search procedure

Given query point q :
$v=$ root of $T, r=\infty$
while v is not a leaf:

$$
\begin{aligned}
& r=\min \left(r,\left\|q-r e p_{v}\right\|\right) \\
& r_{m i d}=(1+t / 2) r_{v} \\
& \text { if }\left\|q-c_{v}\right\| \leq r_{m i d} \text { then } \\
& v=\text { inner child of } v \\
& \text { else } \\
& v=\text { outer child of } v
\end{aligned}
$$

return r

Intuition of correctness

Case distinction:

Intuition of correctness

Case distinction:
1.) q in b_{v}

Intuition of correctness

Case distinction:
1.) q in $b_{v} \rightarrow$ points outside of b_{v} too far away
(to invalidate rep_{v} as $1 / t$-ANN)

Intuition of correctness

Case distinction:

1.) q in $b_{v} \rightarrow$ points outside of b_{v} too far away (to invalidate $r e p_{v}$ as $1 / t$-ANN)
2.) q outside enlarged b_{v}

Intuition of correctness

Case distinction:
1.) q in $b_{v} \rightarrow$ points outside of b_{v} too far away (to invalidate $r e p_{v}$ as $1 / t$-ANN)
2.) q outside enlarged b_{v}
\rightarrow points inside b_{v} all have approximately the same distance to q

Intuition of correctness

Case distinction:
1.) q in $b_{v} \rightarrow$ points outside of b_{v} too far away (to invalidate $r e p_{v}$ as $1 / t$-ANN)
2.) q outside enlarged b_{v}
\rightarrow points inside b_{v} all have approximately the same distance to q
\rightarrow sufficient to test 1 point in $b_{v}:$ rep $_{v}$

Intuition of correctness

Case distinction:
1.) q in $b_{v} \rightarrow$ points outside of b_{v} too far away (to invalidate $r e p_{v}$ as $1 / t$-ANN)
2.) q outside enlarged b_{v}
\rightarrow points inside b_{v} all have approximately the same distance to q
\rightarrow sufficient to test 1 point in b_{v} : rep
3.) q in ring

Intuition of correctness

Case distinction:
1.) q in $b_{v} \rightarrow$ points outside of b_{v} too far away (to invalidate $r e p_{v}$ as $1 / t$-ANN)
2.) q outside enlarged b_{v}
\rightarrow points inside b_{v} all have approximately the same distance to q
\rightarrow sufficient to test 1 point in $b_{v}:$ rep $_{v}$

3.) q in ring

1.) or 2.) applies with slightly worse bounds

Correctness

The algorithm finds a $(1+4 / t)$-ANN.

Correctness

The algorithm finds a $(1+4 / t)$-ANN.
Node w of T : Last node on search path such that $n n(q) \in P_{w}$.

Correctness

The algorithm finds a $(1+4 / t)$-ANN.
Node w of T : Last node on search path such that $n n(q) \in P_{w}$.
Case 1: $n n(q) \in P_{o u t}^{w}$ but $\left\|q-c_{w}\right\| \leq r_{w}(1+1 / t)$

Correctness

The algorithm finds a $(1+4 / t)$-ANN.
Node w of T : Last node on search path such that $n n(q) \in P_{w}$.
Case 1: $n n(q) \in P_{o u t}^{w}$ but $\left\|q-c_{w}\right\| \leq r_{w}(1+1 / t)$

$$
\frac{\left\|q-r e p_{w}\right\|}{\|q-n n(q)\|} \leq \frac{(2+t / 2) r_{w}}{(t / 2) r_{w}} \leq 1+4 / t
$$

Correctness

The algorithm finds a $(1+4 / t)$-ANN.
Node w of T : Last node on search path such that $n n(q) \in P_{w}$.
Case 1: $n n(q) \in P_{o u t}^{w}$ but $\left\|q-c_{w}\right\| \leq r_{w}(1+1 / t)$

$$
\frac{\left\|q-r e p_{w}\right\|}{\|q-n n(q)\|} \leq \frac{(2+t / 2) r_{w}}{(t / 2) r_{w}} \leq 1+4 / t
$$

Case 2: $n n(q) \in P_{i n}^{w}$ but $\left\|q-c_{w}\right\| \geq r_{w}(1+1 / t)$

Correctness

The algorithm finds a $(1+4 / t)$-ANN.
Node w of T : Last node on search path such that $n n(q) \in P_{w}$.
Case 1: $n n(q) \in P_{o u t}^{w}$ but $\left\|q-c_{w}\right\| \leq r_{w}(1+1 / t)$

$$
\frac{\left\|q-r e p_{w}\right\|}{\|q-n n(q)\|} \leq \frac{(2+t / 2) r_{w}}{(t / 2) r_{w}} \leq 1+4 / t
$$

Case 2: $n n(q) \in P_{i n}^{w}$ but $\left\|q-c_{w}\right\| \geq r_{w}(1+1 / t)$

$$
\frac{\left\|q-r e p_{w}\right\|}{\|q-n n(q)\|} \leq \frac{\|q-n n(q)\|+\left\|n n(q)-r e p_{w}\right\|}{\|q-n n(q)\|}
$$

Correctness

The algorithm finds a $(1+4 / t)$-ANN.
Node w of T : Last node on search path such that $n n(q) \in P_{w}$.
Case 1: $n n(q) \in P_{o u t}^{w}$ but $\left\|q-c_{w}\right\| \leq r_{w}(1+1 / t)$

$$
\frac{\left\|q-r e p_{w}\right\|}{\|q-n n(q)\|} \leq \frac{(2+t / 2) r_{w}}{(t / 2) r_{w}} \leq 1+4 / t
$$

Case 2: $n n(q) \in P_{i n}^{w}$ but $\left\|q-c_{w}\right\| \geq r_{w}(1+1 / t)$

$$
\begin{aligned}
\frac{\left\|q-r e p_{w}\right\|}{\|q-n n(q)\|} & \leq \frac{\|q-n n(q)\|+\left\|n n(q)-r e p_{w}\right\|}{\|q-n n(q)\|} \\
& \leq 1+\frac{2 r_{w}}{(t / 2) r_{w}}=1+4 / t
\end{aligned}
$$

Overview

Semi-separated pair decomposition (SSPD)
Ring separator: n-semi-separated pair decomposition
Ring separator tree: $O(n)$-ANN
$(1 / \varepsilon)$-semi-separated pair decomposition - brief sketch

(1/ $)$-Semi-Separated Pairs

ring separator:

- ball $b=b(p, r)$ containing $\geq n / c_{1}$ points
- no point in $b(p, r(1+1 / n)) \backslash b$
- $\geq n / c_{2}$ points outside $b(p, 2 r)$

(1/ $)$-Semi-Separated Pairs

ring separator:

- ball $b=b(p, r)$ containing $\geq n / c_{1}$ points
- no point in $b(p, r(1+1 / n)) \backslash b$
- $\geq n / c_{2}$ points outside $b(p, 2 r)$

(1/ $)$-Semi-Separated Pairs

ring separator:

- ball $b=b(p, r)$ containing $\geq n / c_{1}$ points
- no point in $b(p, r(1+1 / n)) \backslash b$
- $\geq n / c_{2}$ points outside $b(p, 2 r)$

(1/ $)$-Semi-Separated Pairs

ring separator:

- ball $b=b(p, r)$ containing $\geq n / c_{1}$ points
- no point in $b(p, r(1+1 / n)) \backslash b$
- $\geq n / c_{2}$ points outside $b(p, 2 r)$

(1/ $)$-Semi-Separated Pairs

ring separator:

- ball $b=b(p, r)$ containing $\geq n / c_{1}$ points
- no point in $b(p, r(1+1 / n)) \backslash b$
- $\geq n / c_{2}$ points outside $b(p, 2 r)$

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

$$
\begin{aligned}
& \operatorname{diam}\left(P_{\text {in }} \cup P_{\text {out }}\right) \leq 2 r / \varepsilon \\
& \ell:=\min _{p \in P_{\text {in }}, q \in P_{\text {out }}}\|p-q\| \geq r / n
\end{aligned}
$$

$$
\text { snap points to a grid } G_{\alpha} \text { with } \alpha=\varepsilon \ell / 10
$$

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

$\operatorname{diam}\left(P_{\text {in }} \cup P_{\text {out }}\right) \leq 2 r / \varepsilon$
$\ell:=\min _{p \in P_{\text {in }}, q \in P_{\text {out }}}\|p-q\| \geq r / n$
snap points to a grid G_{α} with $\alpha=\varepsilon \ell / 10$
Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{\text {in }}$ and $B \subset P_{\text {out }}$

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

$\operatorname{diam}\left(P_{\text {in }} \cup P_{\text {out }}\right) \leq 2 r / \varepsilon$
$\ell:=\min _{p \in P_{\text {in }}, q \in P_{\text {out }}}\|p-q\| \geq r / n$
snap points to a grid G_{α} with $\alpha=\varepsilon \ell / 10$
Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{\text {in }}$ and $B \subset P_{\text {out }}$

- grid size: $O\left(n / \varepsilon^{2}\right)$

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

$\operatorname{diam}\left(P_{\text {in }} \cup P_{\text {out }}\right) \leq 2 r / \varepsilon$
$\ell:=\min _{p \in P_{\text {in }}, q \in P_{\text {out }}}\|p-q\| \geq r / n$
snap points to a grid G_{α} with $\alpha=\varepsilon \ell / 10$
Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{\text {in }}$ and $B \subset P_{\text {out }}$

- grid size: $O\left(n / \varepsilon^{2}\right)$
- levels in quadtree: $O\left(\log \left(n / \varepsilon^{2}\right)\right)$
\rightarrow \# pairs $=O(n \log n) \quad$ (low weight)

Dealing with $P_{\text {in }}, P_{\text {out }}$ (sketch)

$\operatorname{diam}\left(P_{\text {in }} \cup P_{\text {out }}\right) \leq 2 r / \varepsilon$
$\ell:=\min _{p \in P_{\text {in }}, q \in P_{\text {out }}}\|p-q\| \geq r / n$
snap points to a grid G_{α} with $\alpha=\varepsilon \ell / 10$
Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{\text {in }}$ and $B \subset P_{\text {out }}$

- grid size: $O\left(n / \varepsilon^{2}\right)$
- levels in quadtree: $O\left(\log \left(n / \varepsilon^{2}\right)\right)$
\rightarrow \# pairs $=O(n \log n) \quad$ (low weight)
- snapping: since $\ell \geq r / n$ distances between $p \in P_{\text {in }}$ and $q \in P_{\text {out }}$ approximately stay the same.

Summary

($1 / \varepsilon$)-Semi-separated pair decomposition (SSPD)

$$
\min \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)
$$

Summary

$(1 / \varepsilon)$-Semi-separated pair decomposition (SSPD)

$$
\min \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)
$$

Ring separator tree: n-semi-separated pair decomposition

$$
\text { enclose constant fraction } A \text { of } P \text { by ball } b(c, r) \text { s.t. } \operatorname{dist}(A, P \backslash A) \geq r / n
$$

Summary

($1 / \varepsilon$)-Semi-separated pair decomposition (SSPD)

$$
\min \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)
$$

Ring separator tree: n-semi-separated pair decomposition enclose constant fraction A of P by ball $b(c, r)$ s.t. $\operatorname{dist}(A, P \backslash A) \geq r / n$

Ring separator tree: $O(n)$-ANN
data structure of size $O(n)$ computed in $O(n \log n)$ time, which gives n-ANN in $O(\log n)$ time

Summary

($1 / \varepsilon$)-Semi-separated pair decomposition (SSPD)

$$
\min \left(r_{A}, r_{B}\right) \leq \varepsilon d(A, B)
$$

Ring separator tree: n-semi-separated pair decomposition enclose constant fraction A of P by ball $b(c, r)$ s.t. $\operatorname{dist}(A, P \backslash A) \geq r / n$

Ring separator tree: $O(n)$-ANN
data structure of size $O(n)$ computed in $O(n \log n)$ time, which gives n-ANN in $O(\log n)$ time
($1 / \varepsilon$)-semi-separated pair decomposition n-ring separator + snap to grid + WSPD

