Semi-separated pair decomposition & low-quality approximate nearest neighbors

1. (Compressed) quadtree returns $(1 + \varepsilon)$ -approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))

1. (Compressed) quadtree returns (1+arepsilon)-approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))

Problem: r can be arbitrary small.

1. (Compressed) quadtree returns $(1 + \varepsilon)$ -approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))

Problem: *r* can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can

1. (Compressed) quadtree returns $(1 + \varepsilon)$ -approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))Problem: r can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can (a) Find the O(1) cells of G_{α} that could contain nn(q), where $\alpha = \|p - q\|$ rounded down to the next power 2^{-i}

1. (Compressed) quadtree returns $(1 + \varepsilon)$ -approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))Problem: *r* can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can (a) Find the O(1) cells of G_{α} that could contain nn(q), where $\alpha = \|p - q\|$ rounded down to the next power 2^{-i} (b) Use (1.), starting from these cells

1. (Compressed) quadtree returns $(1 + \varepsilon)$ -approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))Problem: *r* can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can (a) Find the O(1) cells of G_{α} that could contain nn(q), where $\alpha = \|p - q\|$ rounded down to the next power 2^{-i} (b) Use (1.), starting from these cells Now, 1/r = O(n) relative to $\alpha = O(nr)$

1. (Compressed) quadtree returns $(1 + \varepsilon)$ -approximate nearest neighbor of q in time $O(1/\varepsilon^d + \log(1/r))$ time, where r = d(q, nn(q))Problem: *r* can be arbitrary small.

2. If we can compute an O(n)-ANN p, then we can (a) Find the O(1) cells of G_{α} that could contain nn(q), where $\alpha = \|p - q\|$ rounded down to the next power 2^{-i} (b) Use (1.), starting from these cells Now, 1/r = O(n) relative to $\alpha = O(nr)$

This requires O(n)-ANN \rightarrow today

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by $1/\varepsilon$ -well-separated pairs of point sets $\{A, B\}$:

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by $1/\varepsilon$ -well-separated pairs of point sets $\{A, B\}$:

good: O(n) pairs are enough (size of WSPD)

Motivation 2: The weight of the WSPD

Well-separated pair decomposition: Cover all pairs of points by $1/\varepsilon$ -well-separated pairs of point sets $\{A, B\}$:

good: O(n) pairs are enough (size of WSPD) but: might require $\sum_i |A_i| + |B_i| = \Theta(n^2)$ (weight of WSPD)

Overview

Semi-separated pair decomposition (SSPD)

Ring separator tree: $n\mbox{-semi-separated pair decomposition}$ Ring separator tree: $O(n)\mbox{-}{\rm ANN}$

 $(1/\varepsilon)$ -semi-separated pair decomposition

 $1/\varepsilon$ -well-separated pair: $\max(r_A, r_B) \leq \varepsilon d(A, B)$

 $1/\varepsilon$ -well-separated pair: $\max(r_A, r_B) \le \varepsilon d(A, B)$ $1/\varepsilon$ -semi-separated pair: $\min(r_A, r_B) \le \varepsilon d(A, B)$

 $1/\varepsilon$ -well-separated pair: $\max(r_A, r_B) \le \varepsilon d(A, B)$ $1/\varepsilon$ -semi-separated pair: $\min(r_A, r_B) \le \varepsilon d(A, B)$

ring separator:

- ball b = b(p, r) containing $\ge n/c_1$ points
- no point in $b(p, r(1+1/n)) \setminus b$
- $\geq n/c_2$ points outside b(p,2r)

1. Compute $b = b(p, \alpha)$: 2-approximation of smallest ball containing n/c_1 points

(c_1 to be determined later)

1. Compute $b = b(p, \alpha)$: 2-approximation of smallest ball containing n/c_1 points

(c_1 to be determined later)

1. Compute $b = b(p, \alpha)$: 2-approximation of smallest ball containing n/c_1 points

2. Hash the points in $b(p, e \cdot \alpha) \setminus b$ into rings $r_i := b_i \setminus b_{i-1}$, where $b_i := b(p, r(1 + 1/n)^i, b_0 = b$

ball containing n/c_1 points (c_1 to be determined later) $\setminus b_{i-1}$, where

1. Compute $b = b(p, \alpha)$: 2-approximation of smallest ball containing n/c_1 points

2. Hash the points in $b(p, e \cdot \alpha) \setminus b$ into rings $r_i := b_i \setminus b_{i-1}$, where $b_i := b(p, r(1 + 1/n)^i, b_0 = b$

3. Find empty ring r_i and return b_{i-1}

ball containing n/c_1 points (c_1 to be determined later) $\setminus b_{i-1}$, where

1. Compute $b = b(p, \alpha)$: 2-approximation of smallest ball containing n/c_1 points

2. Hash the points in $b(p, e \cdot \alpha) \setminus b$ into rings $r_i := b_i \setminus b_{i-1}$, where $b_i := b(p, r(1 + 1/n)^i, b_0 = b)$

3. Find empty ring r_i and return b_{i-1}

Quiz What is the (expected) worst-case running time of the algorithm?

- A $\Theta(n)$
- B $\Theta(n \log n)$
- C $\Theta(n^2)$

$(c_1 \text{ to be determined later})$

1. Compute $b = b(p, \alpha)$: 2-approximation of smallest ball containing n/c_1 points

2. Hash the points in $b(p, e \cdot \alpha) \setminus b$ into rings $r_i := b_i \setminus b_{i-1}$, where $b_i := b(p, r(1 + 1/n)^i, b_0 = b)$

3. Find empty ring r_i and return b_{i-1}

Quiz What is the (expected) worst-case running time of the algorithm?

A $\Theta(n)$

- B $\Theta(n \log n)$
- $\mathsf{C} \ \Theta(n^2)$

$(c_1 \text{ to be determined later})$

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points \Rightarrow no disk of radius $r = \alpha/2$ contains more than n/c_1 points

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points \Rightarrow no disk of radius $r = \alpha/2$ contains more than n/c_1 points

b(p,8lpha) can be covered by c=O(1) disks of radius lpha/2

b

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points \Rightarrow no disk of radius $r = \alpha/2$ contains more than n/c_1 points $b(p, 8\alpha)$ can be covered by c = O(1) disks of radius $\alpha/2$ Choose: $c_1 := 3c$

b

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points \Rightarrow no disk of radius $r = \alpha/2$ contains more than n/c_1 points b(p,8lpha) can be covered by c=O(1) disks of radius lpha/2Choose: $c_1 := 3c$ $\leq n/c_1$ $b(p, 8\alpha)$ contains $\leq c \frac{n}{3c} < n/2$ points b $r_i := b_i \setminus b_{i-1}$, are *n* ranges in $b_n = b(p, \alpha(1 + 1/n)^n) \subset b(p, \alpha e) \subset b(p, 8\alpha)$

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points \Rightarrow no disk of radius $r = \alpha/2$ contains more than n/c_1 points b(p,8lpha) can be covered by c=O(1) disks of radius lpha/2Choose: $c_1 := 3c$ $\leq n/c_1$ $b(p, 8\alpha)$ contains $\leq c \frac{n}{3c} < n/2$ points b $r_i := b_i \setminus b_{i-1}$, are *n* ranges in $b_n = b(p, \alpha(1 + 1/n)^n) \subset b(p, \alpha e) \subset b(p, 8\alpha)$

pigeonhole principle: There is an empty range r_i

 $b = b(p, \alpha)$ 2-approx. smallest ball containing n/c_1 points \Rightarrow no disk of radius r = lpha/2 contains more than n/c_1 points b(p,8lpha) can be covered by c=O(1) disks of radius lpha/2Choose: $c_1 := 3c$ $\leq n/c_1$ $b(p, 8\alpha)$ contains $\leq c \frac{n}{3c} < n/2$ points b $r_i := b_i \setminus b_{i-1}$, are *n* ranges in $b_n = b(p, \alpha(1 + 1/n)^n) \subset b(p, \alpha e) \subset b(p, 8\alpha)$

pigeonhole principle: There is an empty range r_i

 b_{i-1} contains n/c_1 points, r_i empty, > n/2 points outside of ball of twice the radius

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

• Every node $v \in T$ with corresponding subset $P_v \subset P$ is associated with a 'ring' that separates the points of P_v into two sets

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_v \subset P$ is associated with a 'ring' that separates the points of P_v into two sets
- The interior of the ring has no points inside it

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_v \subset P$ is associated with a 'ring' that separates the points of P_v into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width \boldsymbol{t}

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_v \subset P$ is associated with a 'ring' that separates the points of P_v into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width \boldsymbol{t}

Apply algorithm for ring separator recursively

Ring Separator tree

A binary tree T having the points of P as leaves is a t-ring tree for P iff:

- Every node $v \in T$ with corresponding subset $P_v \subset P$ is associated with a 'ring' that separates the points of P_v into two sets
- The interior of the ring has no points inside it
- The interior of the ring is of width \boldsymbol{t}

Apply algorithm for ring separator recursively Result: A $\frac{1}{n}$ -ring separator tree A n-semi-separated pair decomposition of weight $\Theta(n \log n)$

ree for P iff: sociated with a 'ring' that

Overview

Semi-separated pair decomposition (SSPD)

Ring separator tree: n-semi-separated pair decomposition

Ring separator: O(n)-ANN

 $(1/\varepsilon)$ -semi-separated pair decomposition

Ring Separator Tree

For every node v we ensure:

There is a ball $b_v = b(c_v, r_v)$ s.t. all points of $P_v^{in} = P_v \cap b_v$ are in one child of v (the inner child)

All other points of P_v are outside $b(c_v, (1+t)r_v)$ and stored in the other child (the outer child)

Ring Separator Tree

For every node v we ensure:

There is a ball $b_v = b(c_v, r_v)$ s.t. all points of $P_v^{in} = P_v \cap b_v$ are in one child of v (the inner child)

All other points of P_v are outside $b(c_v, (1+t)r_v)$ and stored in the other child (the outer child)

Store an arbitrary $rep_v \in P_v^{\text{in}}$ in v

Given query point q:

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$

Given query point *q*: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while *v* is not a leaf: $r = \min(r, \|q - rep_v\|)$

Given query point *q*: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while *v* is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

return r

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

 $\operatorname{return} r$

• * *q r*,' ,'

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

 $\operatorname{return} r$

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

return r

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

 $\operatorname{return} r$

	1
1	1
X	l
•	

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

 $\operatorname{return} r$

	1
l	1
1	
X	(

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

return r

Given query point q: $v = \operatorname{root} \operatorname{of} T$, $r = \infty$ while v is not a leaf: $r = \min(r, \|q - rep_v\|)$ $r_{mid} = (1 + t/2)r_v$ if $\|q - c_v\| \leq r_{mid}$ then v = inner child of velse v =outer child of v

return r

Case distinction:

Case distinction:

1.) q in b_v

Case distinction:

1.) $q \text{ in } b_v \rightarrow \text{points outside of } b_v \text{ too far away}$ (to invalidate $rep_v \text{ as } 1/t\text{-ANN}$)

Case distinction:

1.) $q \text{ in } b_v \rightarrow \text{points outside of } b_v \text{ too far away}$ (to invalidate $rep_v \text{ as } 1/t\text{-ANN}$)

2.) q outside enlarged b_v

 $\mathbf{x}q$

Case distinction:

1.) $q \text{ in } b_v \rightarrow \text{points outside of } b_v \text{ too far away}$ (to invalidate $rep_v \text{ as } 1/t\text{-ANN}$)

2.) q outside enlarged b_v

 \rightarrow points inside b_v all have approximately the same distance to q

Case distinction:

1.) $q \text{ in } b_v \rightarrow \text{points outside of } b_v \text{ too far away}$ (to invalidate $rep_v \text{ as } 1/t\text{-ANN}$)

2.) q outside enlarged b_v

 \rightarrow points inside b_v all have approximately the same distance to q

 \rightarrow sufficient to test 1 point in b_v : rep_v

Case distinction:

1.) $q \text{ in } b_v \rightarrow \text{points outside of } b_v \text{ too far away}$ (to invalidate rep_v as 1/t-ANN)

2.) q outside enlarged b_v

 \rightarrow points inside b_v all have approximately the same distance to q

 \rightarrow sufficient to test 1 point in b_v : rep_v

3.) q in ring

Case distinction:

1.) $q \text{ in } b_v \rightarrow \text{points outside of } b_v$ too far away (to invalidate rep_v as 1/t-ANN)

2.) q outside enlarged b_v

 \rightarrow points inside b_v all have approximately the same distance to q

 \rightarrow sufficient to test 1 point in b_v : rep_v

3.) q in ring

1.) or 2.) applies with slightly worse bounds

The algorithm finds a (1 + 4/t)-ANN.

The algorithm finds a (1 + 4/t)-ANN.

Node w of T: Last node on search path such that $nn(q) \in P_w$.

The algorithm finds a (1 + 4/t)-ANN.

Node w of T: Last node on search path such that $nn(q) \in P_w$.

Case 1: $nn(q) \in P_{out}^w$ but $||q - c_w|| \le r_w(1 + 1/t)$

The algorithm finds a (1 + 4/t)-ANN.

Node w of T: Last node on search path such that $nn(q) \in P_w$.

Case 1: $nn(q) \in P_{out}^w$ but $||q - c_w|| \le r_w(1 + 1/t)$ $\frac{||q - rep_w||}{||q - nn(q)||} \le \frac{(2 + t/2)r_w}{(t/2)r_w} \le 1 + 4/t$

The algorithm finds a (1 + 4/t)-ANN.

Node w of T: Last node on search path such that $nn(q) \in P_w$.

Case 1: $nn(q) \in P_{out}^{w}$ but $||q - c_{w}|| \le r_{w}(1 + 1/t)$ $\frac{\|q - rep_w\|}{\|q - nn(q)\|} \le \frac{(2 + t/2)r_w}{(t/2)r_w} \le 1 + 4/t$ Case 2: $nn(q) \in P_{in}^{w}$ but $||q - c_w|| \ge r_w(1 + 1/t)$

The algorithm finds a (1 + 4/t)-ANN.

Node w of T: Last node on search path such that $nn(q) \in P_w$.

Case 1: $nn(q) \in P_{out}^{w}$ but $||q - c_w|| \le r_w(1 + 1/t)$ $\frac{\|q - rep_w\|}{\|q - nn(q)\|} \le \frac{(2 + t/2)r_w}{(t/2)r_w} \le 1 + 4/t$

Case 2: $nn(q) \in P_{in}^{w}$ but $||q - c_{w}|| \ge r_{w}(1 + 1/t)$ $\frac{||q - rep_{w}||}{||q - nn(q)||} \le \frac{||q - nn(q)|| + ||nn(q) - rep_{w}||}{||q - nn(q)||}$

The algorithm finds a (1 + 4/t)-ANN.

Node w of T: Last node on search path such that $nn(q) \in P_w$.

Case 1: $nn(q) \in P_{out}^{w}$ but $||q - c_w|| \le r_w(1 + 1/t)$ $\frac{\|q - rep_w\|}{\|q - nn(q)\|} \le \frac{(2 + t/2)r_w}{(t/2)r_w} \le 1 + 4/t$

Case 2: $nn(q) \in P_{in}^{w}$ but $||q - c_w|| \ge r_w(1 + 1/t)$ $\frac{\|q - rep_w\|}{\|q - nn(q)\|} \le \frac{\|q - nn(q)\| + \|nn(q) - rep_w\|}{\|q - nn(q)\|}$ $\leq 1 + \frac{2r_w}{(t/2)r_w} = 1 + 4/t$

Overview

Semi-separated pair decomposition (SSPD)

Ring separator: $n\mbox{-semi-separated pair decomposition}$ Ring separator tree: $O(n)\mbox{-}{\rm ANN}$

 $(1/\varepsilon)$ -semi-separated pair decomposition – brief sketch

ring separator:

- ball b = b(p, r) containing $\ge n/c_1$ points
- no point in $b(p, r(1+1/n)) \setminus b$
- $\geq n/c_2$ points outside b(p,2r)

$$P_{in} = P \cap b, P_{far} = P$$
$$P_{out} = P \setminus (P_{in} \cup P_{fa})$$

ring separator:

- ball b = b(p, r) containing $\ge n/c_1$ points
- no point in $b(p, r(1+1/n)) \setminus b$
- $\geq n/c_2$ points outside b(p,2r)

 $b(p, 2r/\varepsilon)$

$$P_{in} = P \cap b, P_{far} = P$$
$$P_{out} = P \setminus (P_{in} \cup P_{far})$$

1. P_{in}, P_{far} semi-separated 2. recurse on P_{in} , P_{in}

ring separator:

- ball b = b(p, r) containing $\geq n/c_1$ points
- no point in $b(p, r(1 + 1/n)) \setminus b$
- $\geq n/c_2$ points outside b(p, 2r)

$b(p, 2r/\varepsilon)$

$$P_{in} = P \cap b, P_{far} = P$$
$$P_{out} = P \setminus (P_{in} \cup P_{fa})$$

1. P_{in}, P_{far} semi-separated 2. recurse on P_{in} , P_{in} 3. recurse on $P \setminus P_{in}$, $P \setminus P_{in}$

ring separator:

- ball b = b(p, r) containing $\geq n/c_1$ points
- no point in $b(p, r(1 + 1/n)) \setminus b$
- $\geq n/c_2$ points outside b(p, 2r)

$b(p, 2r/\varepsilon)$

$(1/\varepsilon)$ -Semi-Separated Pairs

 $P_{in} = P \cap b, P_{far} = P \setminus b(p, 2r/\varepsilon)$ $P_{out} = P \setminus (P_{in} \cup P_{far})$ 1. P_{in} , P_{far} semi-separated

2. recurse on P_{in} , P_{in} 3. recurse on $P \setminus P_{in}$, $P \setminus P_{in}$ difficult: 4. P_{in} , P_{out}

ring separator:

- ball b = b(p, r) containing $\geq n/c_1$ points
- no point in $b(p, r(1+1/n)) \setminus b$
- $\geq n/c_2$ points outside b(p, 2r)

 $diam(P_{in} \cup P_{out}) \le 2r/\varepsilon$

Dealing with P_{in} , P_{out} (sketch)

•
$$diam(P_{in} \cup P_{out}) \le 2r$$

 $\ell := \min_{p \in P_{in}, q \in P_{out}} \|p\|$

 $|\varepsilon| > r/r$

 $diam(P_{in} \cup P_{out}) \le 2r/\varepsilon$ $\ell := \min_{p \in P_{in}, q \in P_{out}} \|p - q\| \ge r/n$

snap points to a grid G_{α} with $\alpha = \varepsilon \ell / 10$

 $diam(P_{in} \cup P_{out}) \le 2r/\varepsilon$ $\ell := \min_{p \in P_{in}, q \in P_{out}} \|p - q\| \ge r/n$

snap points to a grid G_{α} with $\alpha = \varepsilon \ell / 10$

Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{in}$ and $B \subset P_{out}$

 $diam(P_{in} \cup P_{out}) \le 2r/\varepsilon$ $\ell := \min_{p \in P_{in}, q \in P_{out}} \|p - q\| \ge r/n$

snap points to a grid G_{α} with $\alpha = \varepsilon \ell / 10$

Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{in}$ and $B \subset P_{out}$

- grid size: $O(n/\varepsilon^2)$

 $diam(P_{in} \cup P_{out}) \le 2r/\varepsilon$ $\ell := \min_{p \in P_{in}, q \in P_{out}} \|p - q\| \ge r/n$

snap points to a grid G_{lpha} with $lpha=arepsilon\ell/10$

Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{in}$ and $B \subset P_{out}$

- grid size: $O(n/\varepsilon^2)$
- levels in quadtree: $O(\log(n/\varepsilon^2))$ \rightarrow # pairs = $O(n \log n)$ (low weight)

 $diam(P_{in} \cup P_{out}) \le 2r/\varepsilon$ $\ell := \min_{p \in P_{in}, q \in P_{out}} \|p - q\| \ge r/n$

snap points to a grid G_{lpha} with $lpha=arepsilon\ell/10$

Use WSPD algorithm for bounded spread to compute WSPs with $A \subset P_{in}$ and $B \subset P_{out}$

- grid size: $O(n/\varepsilon^2)$
- levels in quadtree: $O(\log(n/\varepsilon^2))$ \rightarrow # pairs = $O(n \log n)$ (low weight)
- snapping: since $\ell \geq r/n$ distances between $p \in P_{in}$ and $q \in P_{out}$ approximately stay the same.

 $(1/\varepsilon)$ -Semi-separated pair decomposition (SSPD) $\min(r_A, r_B) \leq \varepsilon d(A, B)$

 $(1/\varepsilon)$ -Semi-separated pair decomposition (SSPD) $\min(r_A, r_B) \le \varepsilon d(A, B)$

Ring separator tree: *n*-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c,r) s.t. $dist(A, P \setminus A) \ge r/n$

 $(1/\varepsilon)$ -Semi-separated pair decomposition (SSPD) $\min(r_A, r_B) \le \varepsilon d(A, B)$

Ring separator tree: *n*-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c,r) s.t. $dist(A, P \setminus A) \geq r/n$

Ring separator tree: O(n)-ANN

data structure of size O(n) computed in $O(n \log n)$ time, which gives *n*-ANN in $O(\log n)$ time

 $(1/\varepsilon)$ -Semi-separated pair decomposition (SSPD) $\min(r_A, r_B) \le \varepsilon d(A, B)$

Ring separator tree: *n*-semi-separated pair decomposition

enclose constant fraction A of P by ball b(c, r) s.t. $dist(A, P \setminus A) \ge r/n$

Ring separator tree: O(n)-ANN

data structure of size O(n) computed in $O(n \log n)$ time, which gives *n*-ANN in $O(\log n)$ time

 $(1/\varepsilon)$ -semi-separated pair decomposition *n*-ring separator + snap to grid + WSPD