
Approximate Voronoi Diagrams

Recap Point Location Among Balls

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R) Size: ?

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R) Size: O (n/ε log(R/r))

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

Size: O (n/ε log(R/r))

How?

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

Size: O (n/ε log(R/r))

• bottom-up: compute MST, lowest to
heighest weight: merge components

How?

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

Size: O (n/ε log(R/r))

• bottom-up: compute MST, lowest to
heighest weight: merge components

• Euclidean space: shifted quadtree

How?

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

Size: O (n/ε log(R/r))

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

Size: O (n/ε log(R/r))

per interval structure:
O(nv/ε log(n

O(1)/ε) = O(nv/ε log(n/ε))

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

Size: O (n/ε log(R/r))

per interval structure:
O(nv/ε log(n

O(1)/ε) = O(nv/ε log(n/ε))

points occur up to log n times

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

Size: O (n/ε log(R/r))

improved (book): O((n/ε) log n)

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

• # of near-neighbor queries: O(log (n/ε))

Size: O (n/ε log(R/r))

improved (book): O((n/ε) log n)

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

• # of near-neighbor queries: O(log (n/ε))

Size: O (n/ε log(R/r))

improved (book): O((n/ε) log n)

log n times only against rv and Rv

Recap Point Location Among Balls

q

• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

• # of near-neighbor queries: O(log (n/ε))

Size: O (n/ε log(R/r))

once [rv, Rv): O(log(n/ε))

improved (book): O((n/ε) log n)

log n times only against rv and Rv

Caveat

O(log (n/ε)) queries

Caveat

O(log (n/ε)) queries

Those queries are also hard . . .

Approximate balls

• For a ball b = b(p, r) the ball b≈ is a (1 + ε)-approximation to b if b ⊆ b≈ ⊂
b(p, (1 + ε)r)

Approximate balls

• For a ball b = b(p, r) the ball b≈ is a (1 + ε)-approximation to b if b ⊆ b≈ ⊂
b(p, (1 + ε)r)

• For a set of balls B, B≈ is a (1 + ε)-approximation if for all b ∈ B there is an
approximation b≈ ∈ B≈

Approximate balls

• For a ball b = b(p, r) the ball b≈ is a (1 + ε)-approximation to b if b ⊆ b≈ ⊂
b(p, (1 + ε)r)

• For a set of balls B, B≈ is a (1 + ε)-approximation if for all b ∈ B there is an
approximation b≈ ∈ B≈

• How should we approximate?

Approximate balls

• For a ball b = b(p, r) the ball b≈ is a (1 + ε)-approximation to b if b ⊆ b≈ ⊂
b(p, (1 + ε)r)

• For a set of balls B, B≈ is a (1 + ε)-approximation if for all b ∈ B there is an
approximation b≈ ∈ B≈

• How should we approximate?

The power of grids!

Approximating the ball

p
b(p)

Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

b≈(p)

• Define b≈(p) as the grid cells intersected by
b(p)

Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

b≈(p)

• Throw all b≈ into a hashtable

• Define b≈(p) as the grid cells intersected by
b(p)

Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

b≈(p)

• Throw all b≈ into a hashtable

• Now deciding whether point q falls into a cer-
tain range is easy: O(1)

q

• Define b≈(p) as the grid cells intersected by
b(p)

Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

b≈(p)

• Throw all b≈ into a hashtable

• Now deciding whether point q falls into a cer-
tain range is easy: O(1)

q

• For constant ball size this only takes O(n/εd)
space!

• Define b≈(p) as the grid cells intersected by
b(p)

Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

b≈(p)

• Throw all b≈ into a hashtable

• Now deciding whether point q falls into a cer-
tain range is easy: O(1)

q

• For constant ball size this only takes O(n/εd)
space!

But we don’t have constant ball sizes. . .

• Define b≈(p) as the grid cells intersected by
b(p)

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:
p is only returned if there are two consecutive indices i and i+ 1 such that q is in
the ball set of i+ 1 but not in the ball set of i

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:
p is only returned if there are two consecutive indices i and i+ 1 such that q is in
the ball set of i+ 1 but not in the ball set of i

r(1 + ε/16)i ≤ d(q, P) ≤ d(q, p) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤
(1 + ε/16)2d(q, P) ≤ (1 + ε/4)d(q, P)

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:
p is only returned if there are two consecutive indices i and i+ 1 such that q is in
the ball set of i+ 1 but not in the ball set of i

r(1 + ε/16)i ≤ d(q, P) ≤ d(q, p) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤
(1 + ε/16)2d(q, P) ≤ (1 + ε/4)d(q, P)

Approximation from using balls
Approximation from approximating the balls

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:
p is only returned if there are two consecutive indices i and i+ 1 such that q is in
the ball set of i+ 1 but not in the ball set of i

r(1 + ε/16)i ≤ d(q, P) ≤ d(q, p) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤
(1 + ε/16)2d(q, P) ≤ (1 + ε/4)d(q, P)

Substitute

Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:
p is only returned if there are two consecutive indices i and i+ 1 such that q is in
the ball set of i+ 1 but not in the ball set of i

r(1 + ε/16)i ≤ d(q, P) ≤ d(q, p) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤
(1 + ε/16)2d(q, P) ≤ (1 + ε/4)d(q, P)

1+ 2ε
16 +

ε2

162 = 1+ ε
8 +

ε
16 = 1+ 3ε

16 ≤ 1+ 4
ε

Intermediate results

Intermediate results

• Given a set P of n points in Rd, one can compute a set of B of O(nε log n) balls

Intermediate results

• Given a set P of n points in Rd, one can compute a set of B of O(nε log n) balls

• s.t. answering (1 + ε)-ANN queries on P can be answered by doing a single
target query on B

Intermediate results

• Given a set P of n points in Rd, one can compute a set of B of O(nε log n) balls

• s.t. answering (1 + ε)-ANN queries on P can be answered by doing a single
target query on B

• Furthermore, if we (1+ε/16)-approximate each ball the target query becomes
easier.

Improvements in low dimensions (for large ε)

Improvements in low dimensions (for large ε)

• Initial, simple construction (previous lecture): balls per pair of points

Improvements in low dimensions (for large ε)

• Initial, simple construction (previous lecture): balls per pair of points
• How can we reduce the number of pairs?

Improvements in low dimensions (for large ε)

• Well Separated Pair Decomposition!

• Initial, simple construction (previous lecture): balls per pair of points
• How can we reduce the number of pairs?

Improvements in low dimensions

Improvements in low dimensions

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

Improvements in low dimensions

• The number of pairs in a WSPD is O(n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

Improvements in low dimensions

• The number of pairs in a WSPD is O(n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

B(repu, repv) = {b(repu, r), b(repv, r)|r = (1 + ε/3)i ∈ J (u, v)}

Improvements in low dimensions

• The number of pairs in a WSPD is O(n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

B(repu, repv) = {b(repu, r), b(repv, r)|r = (1 + ε/3)i ∈ J (u, v)}

and
J (u, v) = [18 ,

4
ε] · ∥repu − repv∥

Improvements in low dimensions

• The number of pairs in a WSPD is O(n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

B(repu, repv) = {b(repu, r), b(repv, r)|r = (1 + ε/3)i ∈ J (u, v)}

and
J (u, v) = [18 ,

4
ε] · ∥repu − repv∥

• We have O(1ε log
1
ε) balls per pair

Improvements in low dimensions

• The number of pairs in a WSPD is O(n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

B(repu, repv) = {b(repu, r), b(repv, r)|r = (1 + ε/3)i ∈ J (u, v)}

and
J (u, v) = [18 ,

4
ε] · ∥repu − repv∥

• We have O(1ε log
1
ε) balls per pair

• |B| = O(n
εd+1 log

1
ε)

Improvements in low dimensions

• The number of pairs in a WSPD is O(n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

B(repu, repv) = {b(repu, r), b(repv, r)|r = (1 + ε/3)i ∈ J (u, v)}

and
J (u, v) = [18 ,

4
ε] · ∥repu − repv∥

• We have O(1ε log
1
ε) balls per pair

• |B| = O(n
εd+1 log

1
ε)

Correctness proof: as exercise

What is this?

Motivation

Motivation
Voronoi diagrams have a multitude of uses:

Motivation
Voronoi diagrams have a multitude of uses:

• Biology Model biological structures like cells
• Hydrology Calculate the rainfall in an area based

on point measurements
• Aviation Find the nearest safe landing zone in

case of failure

What is a Voronoi Diagram?

What is a Voronoi Diagram?
A Voronoi diagram V of a point set P ⊆ Rd is a partition of space
into regions such that a cell of point p ∈ P is:

V (p, P) = s ∈ Rd|∥s− p∥ ≤ ∥s− p′∥for all p′ ∈ P

What is a Voronoi Diagram?
A Voronoi diagram V of a point set P ⊆ Rd is a partition of space
into regions such that a cell of point p ∈ P is:

V (p, P) = s ∈ Rd|∥s− p∥ ≤ ∥s− p′∥for all p′ ∈ P

However, it has complexity O(n⌈ d
2 ⌉) in Rd in the worst case

What is a Voronoi Diagram?
A Voronoi diagram V of a point set P ⊆ Rd is a partition of space
into regions such that a cell of point p ∈ P is:

V (p, P) = s ∈ Rd|∥s− p∥ ≤ ∥s− p′∥for all p′ ∈ P

However, it has complexity O(n⌈ d
2 ⌉) in Rd in the worst case

Can we do better?

Approximate Voronoi diagrams

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram
Given a set P of n points in Rd and parameter ε > 0, a (1 + ε)-Approximated
Voronoi Diagram(AVS) of P is a partition V of Rd into regions φ, s.t. for any region
φ ∈ V we have that repφ is a (1 + ε)-ANN for x, that is:

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram
Given a set P of n points in Rd and parameter ε > 0, a (1 + ε)-Approximated
Voronoi Diagram(AVS) of P is a partition V of Rd into regions φ, s.t. for any region
φ ∈ V we have that repφ is a (1 + ε)-ANN for x, that is:

∀x ∈ φ∥x− repφ∥ ≤ (1 + ε)d(x, P)

Approximate Nearest Neighbors in Rd

Approximate Nearest Neighbors in Rd

(now fast, using approximate Voronoi diagrams)

Fast ANN in Rd

• In the following, asssume P is a set of points contained in hypercube
[0.5− ε/d, 0.5 + ε/d]d

0 1

1

0.5

0.5 ε

Fast ANN in Rd

• In the following, asssume P is a set of points contained in hypercube
[0.5− ε/d, 0.5 + ε/d]d

• Guarantee by some transformation T

0 1

1

0.5

0.5 ε

Fast ANN in Rd

• In the following, asssume P is a set of points contained in hypercube
[0.5− ε/d, 0.5 + ε/d]d

• Guarantee by some transformation T

• Computing ANN of q onP is equivalent to computing the ANN ofT (q) onT (P)

0 1

1

0.5

0.5 ε

Fast ANN in Rd

• In the following, asssume P is a set of points contained in hypercube
[0.5− ε/d, 0.5 + ε/d]d

• Guarantee by some transformation T

• Computing ANN of q onP is equivalent to computing the ANN ofT (q) onT (P)

• If q is outside the unit hypercube [0, 1]d any p ∈ P is an (1 + ε)-ANN

0 1

1

0.5

0.5 ε

q

p

p′

(Exercise: Check, in doubt change constants)

Fast ANN in Rd

• In the following, asssume P is a set of points contained in hypercube
[0.5− ε/d, 0.5 + ε/d]d

• Guarantee by some transformation T

• Computing ANN of q onP is equivalent to computing the ANN ofT (q) onT (P)

• If q is outside the unit hypercube [0, 1]d any p ∈ P is an (1 + ε)-ANN

Thus only consider ANN for points inside [0, 1]d

0 1

1

0.5

0.5 ε

q

p

p′

(Exercise: Check, in doubt change constants)

Creating the AVD
• Remember we can compute a set B of
O(n

εd+1 log
1
ε) balls

Creating the AVD
• Remember we can compute a set B of
O(n

εd+1 log
1
ε) balls

• Approximate b by the cells C′ that intersect it

Creating the AVD
• Remember we can compute a set B of
O(n

εd+1 log
1
ε) balls

• Approximate b by the cells C′ that intersect it

• Pick grid G2i s.t.
√
d2i ≤ (ε/16)r

Creating the AVD
• Remember we can compute a set B of
O(n

εd+1 log
1
ε) balls

• Approximate b by the cells C′ that intersect it

• Pick grid G2i s.t.
√
d2i ≤ (ε/16)r

Creating the AVD
• Remember we can compute a set B of
O(n

εd+1 log
1
ε) balls

• Approximate b by the cells C′ that intersect it

• For each ball the amount of grid cells is bound by
O(1

εd
)

• Pick grid G2i s.t.
√
d2i ≤ (ε/16)r

Creating the AVD
• Remember we can compute a set B of
O(n

εd+1 log
1
ε) balls

• Approximate b by the cells C′ that intersect it

• For each ball the amount of grid cells is bound by
O(1

εd
)

• Create from C′ a set C such that from each instance
of □ ∈ C′ we pick the □ associated to the smallest
ball

• Pick grid G2i s.t.
√
d2i ≤ (ε/16)r

Point location on the grids

Point location on the grids
• (1 + ε)-ANN → target query on B≈

Point location on the grids
• (1 + ε)-ANN → target query on B≈

• target query → find smallest canonical grid cell of C

Point location on the grids
• (1 + ε)-ANN → target query on B≈

• store cells in compressed quadtree!

• target query → find smallest canonical grid cell of C

Point location on the grids
• (1 + ε)-ANN → target query on B≈

• store cells in compressed quadtree!

• Construction: O(|C| log |C|) time

• target query → find smallest canonical grid cell of C

Point location on the grids
• (1 + ε)-ANN → target query on B≈

• store cells in compressed quadtree!

• Construction: O(|C| log |C|) time

• Space: O(|C|)

• target query → find smallest canonical grid cell of C

Point location on the grids
• (1 + ε)-ANN → target query on B≈

• store cells in compressed quadtree!

• Construction: O(|C| log |C|) time

• Space: O(|C|)

• Query time: O(log |C|)

• target query → find smallest canonical grid cell of C

Point location on the grids
• (1 + ε)-ANN → target query on B≈

• store cells in compressed quadtree!

• Construction: O(|C| log |C|) time

• Space: O(|C|)

• Query time: O(log |C|)

• Store for each cell in a leaf the smallest ball
it belongs to

• target query → find smallest canonical grid cell of C

Theorem:

Theorem:

Let P be a set of n points in Rd. One can build a compressed quadtree T̂ in:

Theorem:

Let P be a set of n points in Rd. One can build a compressed quadtree T̂ in:

• O(n
ε2d+1 log

1
ε log

n
ε) time

Theorem:

Let P be a set of n points in Rd. One can build a compressed quadtree T̂ in:

• O(n
ε2d+1 log

1
ε log

n
ε) time

• O(n
ε2d+1 log

1
ε) size

Theorem:

Let P be a set of n points in Rd. One can build a compressed quadtree T̂ in:

• O(n
ε2d+1 log

1
ε log

n
ε) time

• O(n
ε2d+1 log

1
ε) size

Such that a (1 + ε)-ANN query on P can be answered by a single point
location query in T̂ in:

• O(log n
ε) time

Theorem:

Let P be a set of n points in Rd. One can build a compressed quadtree T̂ in:

• O(n
ε2d+1 log

1
ε log

n
ε) time

• O(n
ε2d+1 log

1
ε) size

Such that a (1 + ε)-ANN query on P can be answered by a single point
location query in T̂ in:

• O(log n
ε) time

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

≤ log n
ε2d+2

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

≤ log n
ε2d+2

= 1
2d+2 log

n1/(2d+2)

ε

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

≤ log n
ε2d+2

= 1
2d+2 log

n1/(2d+2)

ε
n1/(2d+2) ≤ n

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

≤ log n
ε2d+2

= 1
2d+2 log

n1/(2d+2)

ε
n1/(2d+2) ≤ n

= O(log n
ε)

Construction time: O(n
ε2d+1 log

1
ε log

n
ε)

• Building a compressed quadtree can be done in O(|C| log |C|) time

• |C| is naively bound by N = O(|B|
εd

)

• |C| can also be computed in that time

• |B|= O(n
εd+1 log

1
ε)

• N = O(n
ε2d+1 log

1
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

≤ log n
ε2d+2

= 1
2d+2 log

n1/(2d+2)

ε
n1/(2d+2) ≤ n

= O(log n
ε)

• O(N logN) = O(n
ε2d+1 log

1
ε log

n
ε)

Size: O(n
ε2d+1 log

1
ε)

Size: O(n
ε2d+1 log

1
ε)

• Compressed quadtrees have size O(|C|)

Size: O(n
ε2d+1 log

1
ε)

• Compressed quadtrees have size O(|C|)

• |C| is bound by N = B
εd

Size: O(n
ε2d+1 log

1
ε)

• Compressed quadtrees have size O(|C|)

• |C| is bound by N = B
εd

• N = O(n
ε2d+1 log

1
ε)

Query time: O(log n
ε)

Query time: O(log n
ε)

• Compressed quadtrees query time O(log |C|)

Query time: O(log n
ε)

• Compressed quadtrees query time O(log |C|)

• |C| is bound by N = B
εd

Query time: O(log n
ε)

• Compressed quadtrees query time O(log |C|)

• |C| is bound by N = B
εd

• logN = O(log n
ε)

Query time: O(log n
ε)

• Compressed quadtrees query time O(log |C|)

• |C| is bound by N = B
εd

• logN = O(log n
ε)

• logN = log n
ε2d+1 log

1
ε

log 1
ε = O(1ε)

≤ log n
ε2d+2

= 1
2d+2 log

n1/(2d+2)

ε
n1/(2d+2) ≤ n

= O(log n
ε)

Summary

Summary

• Recap point-location among balls

Summary

• Recap point-location among balls

• Ball approximation

Summary

• Recap point-location among balls

• Ball approximation

• WSPD for size reduction

Summary

• Recap point-location among balls

• Ball approximation

• WSPD for size reduction

• Approximate Voronoi diagrams with proofs on the bounds

