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How?
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• Given a point set P and a query point q, the target
ball ⊙B of q is the smallest ball of B that contains q

• Interval structure I(P, r,R, ε): Create rings
around each point of increasing radii (1 + ε)i in
interval (r,R)

• Create a Balanced Hierarchically Separated
Tree (BHST) from the points

• Space complexity: O((n/ε) log n log(n/ε))

• # of near-neighbor queries: O(log (n/ε))

Size: O (n/ε log(R/r))

once [rv, Rv): O(log(n/ε))

improved (book): O((n/ε) log n)

log n times only against rv and Rv
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Caveat

O(log (n/ε)) queries

Those queries are also hard . . .
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• For a ball b = b(p, r) the ball b≈ is a (1 + ε)-approximation to b if b ⊆ b≈ ⊂
b(p, (1 + ε)r)

• For a set of balls B, B≈ is a (1 + ε)-approximation if for all b ∈ B there is an
approximation b≈ ∈ B≈

• How should we approximate?

The power of grids!
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Approximating the ball

ε

• Divide the space into a grid with sides ε

p
b(p)

b≈(p)

• Throw all b≈ into a hashtable

• Now deciding whether point q falls into a cer-
tain range is easy: O(1)

q

• For constant ball size this only takes O(n/εd)
space!

But we don’t have constant ball sizes. . .

• Define b≈(p) as the grid cells intersected by
b(p)
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Approximation from using balls
Approximation from approximating the balls
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Approximate interval structure

Lemma Let I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation of
I(P, r,R, ε/16)
For a query point q ∈ M if I≈ returns a target set that is an approximation
of a ball in I centered at a point p with radius α ∈ [r,R] then p is a
(1 + ε/4)-ANN to q

Proof:
p is only returned if there are two consecutive indices i and i+ 1 such that q is in
the ball set of i+ 1 but not in the ball set of i

r(1 + ε/16)i ≤ d(q, P ) ≤ d(q, p) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤
(1 + ε/16)2d(q, P ) ≤ (1 + ε/4)d(q, P )

1+ 2ε
16 +

ε2

162 = 1+ ε
8 +

ε
16 = 1+ 3ε

16 ≤ 1+ 4
ε
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Intermediate results

• Given a set P of n points in Rd, one can compute a set of B of O(nε log n) balls

• s.t. answering (1 + ε)-ANN queries on P can be answered by doing a single
target query on B

• Furthermore, if we (1+ε/16)-approximate each ball the target query becomes
easier.
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Improvements in low dimensions

• The number of pairs in a WSPD is O( n
εd
)

• Construct a (c/ε)-WSPD W of P , where c is sufficiently large

• For every pair {u, v} ∈ W compute B(repu, repv) and add it to B where:

B(repu, repv) = {b(repu, r), b(repv, r)|r = (1 + ε/3)i ∈ J (u, v)}

and
J (u, v) = [18 ,

4
ε ] · ∥repu − repv∥

• We have O( 1ε log
1
ε ) balls per pair

• |B| = O( n
εd+1 log

1
ε )

Correctness proof: as exercise
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Motivation
Voronoi diagrams have a multitude of uses:

• Biology Model biological structures like cells
• Hydrology Calculate the rainfall in an area based

on point measurements
• Aviation Find the nearest safe landing zone in

case of failure
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A Voronoi diagram V of a point set P ⊆ Rd is a partition of space
into regions such that a cell of point p ∈ P is:

V (p, P ) = s ∈ Rd|∥s− p∥ ≤ ∥s− p′∥for all p′ ∈ P

However, it has complexity O(n⌈ d
2 ⌉) in Rd in the worst case

Can we do better?
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Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram
Given a set P of n points in Rd and parameter ε > 0, a (1 + ε)-Approximated
Voronoi Diagram(AVS) of P is a partition V of Rd into regions φ, s.t. for any region
φ ∈ V we have that repφ is a (1 + ε)-ANN for x, that is:

∀x ∈ φ∥x− repφ∥ ≤ (1 + ε)d(x, P )
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Approximate Nearest Neighbors in Rd

(now fast, using approximate Voronoi diagrams)
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Fast ANN in Rd

• In the following, asssume P is a set of points contained in hypercube
[0.5− ε/d, 0.5 + ε/d]d

• Guarantee by some transformation T

• Computing ANN of q onP is equivalent to computing the ANN ofT (q) onT (P )

• If q is outside the unit hypercube [0, 1]d any p ∈ P is an (1 + ε)-ANN

Thus only consider ANN for points inside [0, 1]d

0 1

1

0.5

0.5 ε

q

p

p′

(Exercise: Check, in doubt change constants)
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Creating the AVD
• Remember we can compute a set B of
O( n

εd+1 log
1
ε ) balls

• Approximate b by the cells C′ that intersect it

• For each ball the amount of grid cells is bound by
O( 1

εd
)

• Create from C′ a set C such that from each instance
of □ ∈ C′ we pick the □ associated to the smallest
ball

• Pick grid G2i s.t.
√
d2i ≤ (ε/16)r
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Point location on the grids
• (1 + ε)-ANN → target query on B≈

• store cells in compressed quadtree!

• Construction: O(|C| log |C|) time

• Space: O(|C|)

• Query time: O(log |C|)

• Store for each cell in a leaf the smallest ball
it belongs to

• target query → find smallest canonical grid cell of C
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n
ε ) time

• O( n
ε2d+1 log

1
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• Recap point-location among balls

• Ball approximation

• WSPD for size reduction

• Approximate Voronoi diagrams with proofs on the bounds


