Approximate Voronoi Diagrams

• Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R)

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: ?

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points

How?

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points

How?

• bottom-up: compute MST, lowest to heighest weight: merge components

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points

How?

- bottom-up: compute MST, lowest to heighest weight: merge components
- Euclidean space: shifted quadtree

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$

per interval structure: $O(n_v / \varepsilon \log(n^{O(1)} / \varepsilon)) = O(n_v / \varepsilon \log(n / \varepsilon))$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$

per interval structure: $O(n_v / \varepsilon \log(n^{O(1)} / \varepsilon)) = O(n_v / \varepsilon \log(n / \varepsilon))$

points occur up to $\log n$ times

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$ improved (book): $O((n/\varepsilon) \log n)$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$ improved (book): $O((n/\varepsilon) \log n)$
- # of near-neighbor queries: $O(\log (n/\varepsilon))$

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$ improved (book): $O((n/\varepsilon) \log n)$
- # of near-neighbor queries: $O(\log(n/\varepsilon))$ $\log n$ times only against r_v and R_v

- Given a point set P and a query point q, the target ball $\odot_{\mathcal{B}}$ of q is the smallest ball of \mathcal{B} that contains q
- Interval structure $I(P, r, R, \varepsilon)$: Create rings around each point of increasing radii $(1 + \varepsilon)^i$ in interval (r, R) Size: $O(n/\varepsilon \log(R/r))$
- Create a Balanced Hierarchically Separated Tree (BHST) from the points
- Space complexity: $O((n/\varepsilon) \log n \log(n/\varepsilon))$ improved (book): $O((n/\varepsilon) \log n)$
- # of near-neighbor queries: $O(\log (n/\varepsilon))$ $\log n$ times only against r_v and R_v once $[r_v, R_v)$: $O(\log(n/\varepsilon))$

Caveat

$O(\log{(n/\varepsilon)})$ queries

Caveat

$O(\log{(n/\varepsilon)})$ queries

Those queries are also hard ...

• For a ball b = b(p, r) the ball b_{\approx} is a $(1 + \varepsilon)$ -approximation to b if $b \subseteq b_{\approx} \subset b_{\approx}$ $b(p, (1+\varepsilon)r)$

- For a ball b = b(p, r) the ball b_{\approx} is a $(1 + \varepsilon)$ -approximation to b if $b \subseteq b_{\approx} \subset$ $b(p, (1+\varepsilon)r)$
- For a set of balls \mathcal{B} , \mathcal{B}_{\approx} is a $(1 + \varepsilon)$ -approximation if for all $b \in \mathcal{B}$ there is an approximation $b_{\approx} \in \mathcal{B}_{\approx}$

- For a ball b = b(p, r) the ball b_{\approx} is a $(1 + \varepsilon)$ -approximation to b if $b \subseteq b_{\approx} \subset$ $b(p, (1+\varepsilon)r)$
- For a set of balls \mathcal{B} , \mathcal{B}_{\approx} is a $(1 + \varepsilon)$ -approximation if for all $b \in \mathcal{B}$ there is an approximation $b_{\approx} \in \mathcal{B}_{\approx}$
- How should we approximate?

- For a ball b = b(p, r) the ball b_{\approx} is a $(1 + \varepsilon)$ -approximation to b if $b \subseteq b_{\approx} \subset$ $b(p, (1+\varepsilon)r)$
- For a set of balls \mathcal{B} , \mathcal{B}_{\approx} is a $(1 + \varepsilon)$ -approximation if for all $b \in \mathcal{B}$ there is an approximation $b_{\approx} \in \mathcal{B}_{\approx}$
- How should we approximate?

The power of grids!

- Divide the space into a grid with sides ${\ensuremath{\varepsilon}}$

- Divide the space into a grid with sides ${\ensuremath{\varepsilon}}$
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)

- Divide the space into a grid with sides ε
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable

- Divide the space into a grid with sides ε
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable
- Now deciding whether point q falls into a certain range is easy: ${\cal O}(1)$

- Divide the space into a grid with sides ε
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable
- Now deciding whether point q falls into a certain range is easy: ${\cal O}(1)$
- For constant ball size this only takes $O(n/\varepsilon^d)$ space!

- Divide the space into a grid with sides ε
- Define $b_{\approx}(p)$ as the grid cells intersected by b(p)
- Throw all b_{\approx} into a hashtable
- Now deciding whether point q falls into a certain range is easy: ${\cal O}(1)$
- For constant ball size this only takes $O(n/\varepsilon^d)$ space!

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a $(1 + \varepsilon/4)$ -ANN to q

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a (1+arepsilon/4)-ANN to q

Proof:

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a (1+arepsilon/4)-ANN to q

Proof:

p is only returned if there are two consecutive indices i and i + 1 such that q is in the ball set of i + 1 but not in the ball set of i

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a $(1 + \varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i + 1 such that q is in the ball set of i + 1 but not in the ball set of i

$$\begin{split} r(1+\varepsilon/16)^i \leq \mathbf{d}(q,P) \leq \mathbf{d}(q,p) \leq r(1+\varepsilon/16)^{i+1} \\ (1+\varepsilon/16)^2 \mathbf{d}(q,P) \leq (1+\varepsilon/4) \mathbf{d}(q,P) \end{split}$$

$P^{n+1}(1+\varepsilon/16) \le P$

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a $(1 + \varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i + 1 such that q is in the ball set of i + 1 but not in the ball set of i

$$\begin{aligned} r(1 + \varepsilon/16)^i \leq \mathbf{d}(q, P) \leq \mathbf{d}(q, p) \leq \frac{r(1 + \varepsilon/16)^i}{(1 + \varepsilon/16)^2 \mathbf{d}(q, P)} \leq \frac{r(1 + \varepsilon/16)^i}{(1 + \varepsilon/4) \mathbf{d}(q, P)} \end{aligned}$$

Approximation from using balls Approximation from approximating the balls

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a $(1 + \varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i + 1 such that q is in the ball set of i + 1 but not in the ball set of i

$$r(1 + \varepsilon/16)^{i} \leq \mathbf{d}(q, P) \leq \mathbf{d}(q, p) \leq \mathbf{r}(1 + \varepsilon/16)^{i} \leq (1 + \varepsilon/16)^{i} \leq (1 + \varepsilon/4)\mathbf{d}(q, P) \leq (1 + \varepsilon/4)\mathbf{d}(q, P)$$

Substitute

$^{+1}(1+\varepsilon/16) \le$ P)
Approximate interval structure

Lemma Let $\mathcal{I}_{\approx}(P, r, R, \varepsilon/16)$ be a $(1 + \varepsilon/16)$ -approximation of $\mathcal{I}(P, r, R, \varepsilon/16)$ For a query point $q \in \mathcal{M}$ if \mathcal{I}_{\approx} returns a target set that is an approximation of a ball in \mathcal{I} centered at a point p with radius $\alpha \in [r, R]$ then p is a $(1 + \varepsilon/4)$ -ANN to q

Proof:

p is only returned if there are two consecutive indices i and i + 1 such that q is in the ball set of i + 1 but not in the ball set of i

$$r(1 + \varepsilon/16)^{i} \leq \mathbf{d}(q, P) \leq \mathbf{d}(q, p) \leq r(1 + \varepsilon/16)^{i+1}$$
$$(1 + \varepsilon/16)^{2}\mathbf{d}(q, P) \leq (1 + \varepsilon/4)\mathbf{d}(q, P)$$
$$1 + \frac{2\varepsilon}{16} + \frac{\varepsilon^{2}}{16^{2}} = 1 + \frac{\varepsilon}{8} + \frac{\varepsilon}{16} = 1 + \frac{3\varepsilon}{16}$$

$^{+1}(1+\varepsilon/16) \le$ < 1 -

• Given a set P of n points in \mathbb{R}^d , one can compute a set of \mathcal{B} of $O(rac{n}{arepsilon}\log n)$ balls

- Given a set P of n points in \mathbb{R}^d , one can compute a set of \mathcal{B} of $O(rac{n}{\epsilon}\log n)$ balls
- s.t. answering $(1 + \varepsilon)$ -ANN queries on P can be answered by doing a single target query on $\mathcal B$

f $\mathcal B$ of $O(rac{n}{arepsilon}\log n)$ balls ered by doing a single

- Given a set P of n points in \mathbb{R}^d , one can compute a set of \mathcal{B} of $O(rac{n}{\epsilon}\log n)$ balls
- s.t. answering $(1 + \varepsilon)$ -ANN queries on P can be answered by doing a single target query on \mathcal{B}
- Furthermore, if we $(1 + \varepsilon/16)$ -approximate each ball the target query becomes easier.

• Initial, simple construction (previous lecture): balls per pair of points

- Initial, simple construction (previous lecture): balls per pair of points
- How can we reduce the number of pairs?

- Initial, simple construction (previous lecture): balls per pair of points
- How can we reduce the number of pairs?
- Well Separated Pair Decomposition!

• Construct a (c/ε) -WSPD ${\cal W}$ of P, where c is sufficiently large

- Construct a (c/ε) -WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{c^d})$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}(rep_u, rep_v)$ and add it to \mathcal{B} where:

- Construct a (c/ε) -WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\varepsilon^d})$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}(rep_u, rep_v)$ and add it to \mathcal{B} where:

 $\mathcal{B}(rep_u, rep_v) = \{ \mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v) \}$

- Construct a (c/ε) -WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{c^d})$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}(rep_u, rep_v)$ and add it to \mathcal{B} where:

 $\mathcal{B}(rep_u, rep_v) = \{ \mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v) \}$ 200

$$\mathcal{J}(u,v) = \begin{bmatrix} \frac{1}{8}, \frac{4}{\varepsilon} \end{bmatrix} \cdot \|rep_u - rep_v\|$$

- Construct a (c/ε) -WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\sigma^d})$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}(rep_u, rep_v)$ and add it to \mathcal{B} where:

 $\mathcal{B}(rep_u, rep_v) = \{ \mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v) \}$

and

 $\mathcal{J}(u,v) = \begin{bmatrix} \frac{1}{8}, \frac{4}{\epsilon} \end{bmatrix} \cdot \|rep_u - rep_v\|$

• We have $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ balls per pair

- Construct a (c/ε) -WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\sigma^d})$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}(rep_u, rep_v)$ and add it to \mathcal{B} where:

 $\mathcal{B}(rep_u, rep_v) = \{ \mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v) \}$

and $\mathcal{J}(u,v) = \begin{bmatrix} \frac{1}{8}, \frac{4}{\epsilon} \end{bmatrix} \cdot \|rep_u - rep_v\|$

- We have $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ balls per pair
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$

- Construct a (c/ε) -WSPD \mathcal{W} of P, where c is sufficiently large
- The number of pairs in a WSPD is $O(\frac{n}{\sigma^d})$
- For every pair $\{u, v\} \in \mathcal{W}$ compute $\mathcal{B}(rep_u, rep_v)$ and add it to \mathcal{B} where:

 $\mathcal{B}(rep_u, rep_v) = \{ \mathbf{b}(rep_u, r), \mathbf{b}(rep_v, r) | r = (1 + \varepsilon/3)^i \in \mathcal{J}(u, v) \}$

and $\mathcal{J}(u,v) = \begin{bmatrix} \frac{1}{8}, \frac{4}{\epsilon} \end{bmatrix} \cdot \|rep_u - rep_v\|$

- We have $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon})$ balls per pair
- $|\mathcal{B}| = O(\frac{n}{\epsilon^{d+1}} \log \frac{1}{\epsilon})$

Correctness proof: as exercise

Motivation

Motivation

Voronoi diagrams have a multitude of uses:

Motivation

Voronoi diagrams have a multitude of uses:

- *Biology* Model biological structures like cells
- *Hydrology* Calculate the rainfall in an area based on point measurements
- *Aviation* Find the nearest safe landing zone in case of failure

A Voronoi diagram V of a point set $P \subseteq \mathbb{R}^d$ is a partition of space into regions such that a cell of point $p \in P$ is:

$$V(p,P) = s \in \mathbb{R}^d | \|s - p\| \le \|s - p'\| \text{for all } p' \in P$$

A Voronoi diagram V of a point set $P \subseteq \mathbb{R}^d$ is a partition of space into regions such that a cell of point $p \in P$ is:

$$V(p,P) = s \in \mathbb{R}^d | \|s - p\| \le \|s - p'\| \text{for all } p' \in P$$

However, it has complexity $O(n^{\lceil \frac{d}{2} \rceil})$ in \mathbb{R}^d in the worst case

A Voronoi diagram V of a point set $P \subseteq \mathbb{R}^d$ is a partition of space into regions such that a cell of point $p \in P$ is:

 $V(p, P) = s \in \mathbb{R}^{d} | ||s - p|| \le ||s - p'||$ for all $p' \in P$

However, it has complexity $O(n^{\lceil \frac{d}{2} \rceil})$ in \mathbb{R}^d in the worst case Can we do better?

Approximate Voronoi diagrams

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram Given a set *P* of *n* points in \mathbb{R}^d and parameter $\varepsilon > 0$, a $(1 + \varepsilon)$ -Approximated *Voronoi Diagram(AVS)* of P is a partition \mathcal{V} of \mathbb{R}^d into regions φ , s.t. for any region $\varphi \in \mathcal{V}$ we have that rep_{φ} is a $(1 + \varepsilon)$ -ANN for x, that is:

Approximate Voronoi diagrams

Definition: Approximate Voronoi Diagram Given a set P of n points in \mathbb{R}^d and parameter $\varepsilon > 0$, a $(1 + \varepsilon)$ -Approximated *Voronoi Diagram(AVS)* of P is a partition \mathcal{V} of \mathbb{R}^d into regions φ , s.t. for any region $\varphi \in \mathcal{V}$ we have that rep_{φ} is a $(1 + \varepsilon)$ -ANN for x, that is:

 $\forall x \in \varphi \| x - rep_{\varphi} \| \le (1 + \varepsilon) d(x, P)$

Approximate Nearest Neighbors in \mathbb{R}^d

Approximate Nearest Neighbors in \mathbb{R}^d

(now fast, using approximate Voronoi diagrams)

• In the following, asssume P is a set of points contained in hypercube $[0.5 - \varepsilon/d, 0.5 + \varepsilon/d]^d$

- In the following, asssume P is a set of points contained in hypercube $[0.5 - \varepsilon/d, 0.5 + \varepsilon/d]^d$
- Guarantee by some transformation T

- In the following, asssume P is a set of points contained in hypercube $[0.5 - \varepsilon/d, 0.5 + \varepsilon/d]^d$
- Guarantee by some transformation T
- Computing ANN of q on P is equivalent to computing the ANN of T(q) on T(P)

- In the following, asssume P is a set of points contained in hypercube $[0.5 - \varepsilon/d, 0.5 + \varepsilon/d]^d$
- Guarantee by some transformation T
- Computing ANN of q on P is equivalent to computing the ANN of T(q) on T(P)
- If q is outside the unit hypercube $[0,1]^d$ any $p \in P$ is an $(1 + \varepsilon)$ -ANN

(Exercise: Check, in doubt change constants)

- In the following, asssume P is a set of points contained in hypercube $[0.5 - \varepsilon/d, 0.5 + \varepsilon/d]^d$
- Guarantee by some transformation T
- Computing ANN of q on P is equivalent to computing the ANN of T(q) on T(P)
- If q is outside the unit hypercube $[0,1]^d$ any $p \in P$ is an $(1 + \varepsilon)$ -ANN

(Exercise: Check, in doubt change constants)

Thus only consider ANN for points inside $[0,1]^d$
- Remember we can compute a set \mathcal{B} of $O\bigl(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon}\bigr)$ balls

- Remember we can compute a set \mathcal{B} of $O\bigl(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon}\bigr)$ balls
- Approximate b by the cells \mathcal{C}' that intersect it

- Remember we can compute a set \mathcal{B} of $O\bigl(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon}\bigr)$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$

- Remember we can compute a set \mathcal{B} of $O\bigl(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon}\bigr)$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$

- Remember we can compute a set \mathcal{B} of $O\bigl(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon}\bigr)$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$
- For each ball the amount of grid cells is bound by $O\bigl(\frac{1}{\varepsilon^d}\bigr)$

- Remember we can compute a set \mathcal{B} of $O\bigl(\frac{n}{\varepsilon^{d+1}}\log\frac{1}{\varepsilon}\bigr)$ balls
- Approximate b by the cells \mathcal{C}' that intersect it
- Pick grid G_{2^i} s.t. $\sqrt{d}2^i \leq (\varepsilon/16)r$
- For each ball the amount of grid cells is bound by $O\bigl(\frac{1}{\varepsilon^d}\bigr)$
- Create from \mathcal{C}' a set \mathcal{C} such that from each instance of $\Box \in \mathcal{C}'$ we pick the \Box associated to the smallest ball

• $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}

- $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query ightarrow find smallest canonical grid cell of ${\mathcal C}$

- $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query ightarrow find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!

- $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query ightarrow find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log|\mathcal{C}|)$ time

- $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query ightarrow find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log|\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$

- $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query \rightarrow find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log|\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$
- Query time: $O(\log |C|)$

- $(1 + \varepsilon)$ -ANN \rightarrow target query on \mathcal{B}_{\approx}
- target query ightarrow find smallest canonical grid cell of ${\mathcal C}$
- store cells in compressed quadtree!
- Construction: $O(|\mathcal{C}|\log|\mathcal{C}|)$ time
- Space: $O(|\mathcal{C}|)$
- Query time: $O(\log |C|)$
- Store for each cell in a leaf the *smallest* ball it belongs to

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

• $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time
- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$ size

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time
- $O(\frac{n}{\epsilon^{2d+1}}\log\frac{1}{\epsilon})$ size

Such that a $(1 + \varepsilon)$ -ANN query on P can be answered by a single point location query in T in:

• $O(\log \frac{n}{\epsilon})$ time

Let P be a set of n points in \mathbb{R}^d . One can build a compressed quadtree \hat{T} in:

- $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\log\frac{n}{\varepsilon})$ time -
- $O(\frac{n}{\epsilon^{2d+1}}\log\frac{1}{\epsilon})$ size

Such that a $(1 + \varepsilon)$ -ANN query on P can be answered by a single point location query in T in:

• $O(\log \frac{n}{\epsilon})$ time

• Building a compressed quadtree can be done in $O(|C| \log |C|)$ time

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\varepsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$

Construction time: $O(\frac{n}{c^{2d+1}}\log\frac{1}{c}\log\frac{n}{c})$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$
- $\log N = \log \frac{n}{\epsilon^{2d+1}} \log \frac{1}{\epsilon}$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$

•
$$\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon}$$

 $\log \frac{1}{\epsilon} = O(\frac{1}{\epsilon})$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$
- $\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$

 $\log \frac{1}{c} = O(\frac{1}{c})$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$
- $\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$

$$= \frac{1}{2d+2} \log \frac{n^{1/(2d+2)}}{\varepsilon}$$

 $\log \frac{1}{c} = O(\frac{1}{c})$

Construction time: $O(\frac{n}{c^{2d+1}}\log\frac{1}{c}\log\frac{n}{c})$

- Building a compressed quadtree can be done in $O(|C| \log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{2d+1} \log \frac{1}{2})$
- $\log N =$

$$\left(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon}\right) \qquad \log\frac{1}{\varepsilon} = O\left(\frac{1}{\varepsilon}\right)$$
$$= \log\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon} \le \log\frac{n}{\varepsilon^{2d+2}}$$
$$= \frac{1}{2d+2}\log\frac{n^{1/(2d+2)}}{\varepsilon}$$

- Building a compressed quadtree can be done in $O(|C|\log |C|)$ time
- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$
- $\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$

$$= \frac{1}{2d+2} \log \frac{n^{1/(2d+2)}}{\varepsilon}$$
$$= O(\log \frac{n}{\varepsilon})$$

Construction time: $O(\frac{n}{c^{2d+1}}\log\frac{1}{c}\log\frac{n}{c})$

• Building a compressed quadtree can be done in $O(|C|\log |C|)$ time

 $= \frac{1}{2d+2} \log \frac{n^{1/(2d+2)}}{\epsilon}$

 $= O(\log \frac{n}{\epsilon})$

- |C| is naively bound by $N = O(\frac{|\mathcal{B}|}{\epsilon^d})$
- |C| can also be computed in that time
- $|\mathcal{B}| = O(\frac{n}{\varepsilon^{d+1}} \log \frac{1}{\varepsilon})$
- $N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$
- $\log N = \log \frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon} \le \log \frac{n}{\varepsilon^{2d+2}}$

• $O(N \log N) = O(\frac{n}{\epsilon^{2d+1}} \log \frac{1}{\epsilon} \log \frac{n}{\epsilon})$

Size: $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$

Size: $O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$

• Compressed quadtrees have size O(|C|)

Size:
$$O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$$

- Compressed quadtrees have size O(|C|)
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$
Size:
$$O(\frac{n}{\varepsilon^{2d+1}}\log\frac{1}{\varepsilon})$$

- Compressed quadtrees have size O(|C|)
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$

•
$$N = O(\frac{n}{\varepsilon^{2d+1}} \log \frac{1}{\varepsilon})$$

• Compressed quadtrees query time $O(\log |C|)$

- Compressed quadtrees query time $O(\log |C|)$
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$

- Compressed quadtrees query time $O(\log |C|)$
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$
- $\log N = O(\log \frac{n}{\varepsilon})$

- Compressed quadtrees query time $O(\log |C|)$
- |C| is bound by $N = \frac{\mathcal{B}}{\varepsilon^d}$
- $\log N = O(\log \frac{n}{\varepsilon})$

$n^{1/(2d+2)} \le n$

• Recap point-location among balls

- Recap point-location among balls
- Ball approximation

- Recap point-location among balls
- Ball approximation
- WSPD for size reduction

- Recap point-location among balls
- Ball approximation
- WSPD for size reduction
- Approximate Voronoi diagrams with proofs on the bounds