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1 Introduction

This Project work is funded by DAAD WISE Programme and done as a part
of Internship in TU Dortmund. My sincere thanks goes to Prof. Dr. Günter
Rudolph, without whom this wouldn’t have been possible.

In this project the main idea is to extend the already proposed ∆p SMS-
EMOA [7] to 3-D benchmark functions. The main idea of SMS-EMOA [2]
was to select an individual over another by hyper-volume measure using mu+1
Evolution Strategy.But this does not lead to an evenly distributed Pareto front
that we are looking for in the context of multiobjective online control [7]. Aver-
aged Hausdorff distance measure [10] is another recently proposed performance
metric that can be used with more accuracy than traditional Generational Dis-
tance or Inverse Generational Distance measure. ∆p SMS-EMOA have been
developed with an aim to incorporate Averaged Hausdorff distance measure
to obtain an algorithm generating evenly distributed Pareto fronts. Here the
algorithm maintains an archive, and solutions are updated depending on the Av-
eraged Hausdorff distance measure. Now for computing this measure we need
the knowledge of the reference set with which we shall compare the current ap-
proximated Pareto front. This reference set is formed by uniform distribution
of the points on the current Pareto front. For 2-D this was easier, by building
piece-wise linear approximation of the front and distributing points uniformly
over it. With 3-D this job is very challenging and itself a good problem of
computational geometry. Mainly the difficulty is that the points are not all on
the same hyperplane. The idea is to construct a surface with pieces of intercon-
nected triangles. This is called Triangulation. Delaunay’s Triangulation is one
such commonly used triangulation technique. Here after the triangulation is
done on the set of points of the Approximated Pareto front we observe triangles
of different areas being formed. While calculating the area of each triangle we
neglect some triangles which contribute very little to the overall area, to speed
up the run time. Now considering the minimum area of a triangle we go on
diving each triangle into equal parts such that area of each part is nearly equal
to the minimum area. Now we find that the range of the areas of the triangles is
very small compared to the total area. We replace each triangle with their ver-
tices. This forms an uniform distribution of points on the surface. And now we
employ clustering over these huge set of points to produce required reference set
points. Even after this though the points are nearly uniformly distributed, still
the boundary has some imperfections. So to make the boundary uniform, we de-
tect the boundary of the front and form a piece-wise linear approximation of it.
Now we place those new boundary points over this piece-wise linear boundary
at regular intervals. Thus we successfully produce the reference set. Now the
second part of the project deals with writing the whole code of ∆p SMS-EMOA
in Matlab. The original updation strategy have been modified to some extent
for better performance. We have simulated the algorithm on DTLZ test bed [4].

The article is classified into several sections which describe the project work
more clearly. The sections are made in order of the work done. Section 2 deals
with triangulation and formation of a surface from a set of points. Section 3 deals
with division of the triangles into a number of smaller triangles of approximately
equal area. Section 4 deals with the final part of construction of the reference
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set and use of clustering to form it. Section 5 outlines the update strategy used
with SMS-EMOA along with the pseudo-code of the generation of reference
set. Section 6 presents the result of simulation of the complete ∆p SMS-EMOA
algorithm over DTLZ1 and DTLZ2 test cases. And at last we conclude the
article in Section 7.

2 Delaunay’s triangulation

In computational geometry and computer graphics Delaunay’s Triangulation is
one of the most popular method for generation of a surface from a set of points.
Mathematically it is defined as : a Delaunay Triangulation for a set of points
P in a plane is a triangulation DT (P ) such that no point in P is inside the
circumcircle of any triangle in DT (P ). The basic idea associated with it is to
maximize the minimum angle of the triangle and thereby avoiding skinny tri-
angles. There are several mathematical properties and discussions associated
with this topic which is certainly beyond the scope of this project. There have
been many algorithms [9] which have successfully implemented Delaunay’s Tri-
angulation. Some of the famous algorithms are Flip Algorithms; Divide and
Conquer; Sweephull [5] etc. In this case we have used the already available
Matlab code for Delaunay’s Triangulation.

From a given set of points, which in this case is the present approximated
Pareto front we build the triangulated surface with the help of Delaunay’s Trian-
gulation. Now the job is to place NR points uniformly over this surface. Matlab
have several inbuilt commands for executing delaunay’s triangulation.

One such command is : TRI = delaunay(X,Y) ; creates a 2-D Delaunay
triangulation of the points (X,Y), where X and Y are column-vectors. TRI is
a matrix representing the set of triangles that make up the triangulation. The
matrix is of size mtri-by-3, where mtri is the number of triangles. Each row of
TRI specifies a triangle defined by indices with respect to the points. Then we
can use triplot or trimesh to plot the figure.
Here we are actually dealing with 3-D cases. To build a surface we perform De-
launay’s triangulation in x-y plane in 2-D and then raise the points to their re-
spective heights to form the surface. One such sample case is shown in Figure 1.
From an already given set of points, which is approximated Pareto front in 3-D
for DTLZ2 we show the triangulation.
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Figure 1: Delaunay’s Triangulation for DTLZ2 test case

3 Division of triangles

Now as we have a set of triangles forming a surface, we observe the area of
each triangle. Observing the areas for several different cases we infer that there
are some triangles which are very small in area compared to the average area
contribution of each triangle and deletion of this triangle won’t effect the overall
surface area. Now the real importance of this deletion will be clear when we
discuss the principle of division of the triangles. Now of the remaining triangles
we choose the triangle with the least area as the standard and aim to divide
every triangle equally into triangles of area same as the least area. In this way
we will have triangles of equal area and by collecting them we can make NR

polygons of equal area. But in practice this is very hard to realize. Dividing the
triangles into n parts where n is in the order of 2 is easier. But in this process
we can’t keep the area of each part of the triangle equal to the least area of
all the triangles. Still the area of each small pieces of triangles of one larger
triangle are all equal and approximately equal to the required least area. The
standard deviation of the area triangles formed is very small. So practically we
can assume that we have divided the whole surface into large numbers of small
triangles of equal area. In Figure 2 we show the boxplot of the area of the
triangles produced to have an idea regarding the variation. Now for collecting
the triangles to make NR uniform points, it is better to at first replace the set
of triangles with their respective vertices instead of centroids as it reduces the
number of points and helps the computation. Also selecting the centroids makes
the net boundary of the refernce set move more inward which is not intended.
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Figure 2: Boxplot of the area of the triangles produced

The logic behind the division of the triangle is simple. We divide a triangle
by drawing median over the longest side. In this way we avoid making skinny
triangles. A recursive routine is needed which would continuously divide a tri-
angle into several equal parts until we have the required number of triangles
N = 2n = d total area of surface

required least area e, where n is the number of steps of recursive
division need. Algorithm 3 represents the pseudocode for the division of a tri-
angle operation.

Figure 3 shows the intermediate step where the surface is divided into equal
number of small triangles and Figure 4 shows the next step where the triangles
are replaced with their respective centroids for sample DTLZ2 test case. From
the experiment it is noted that approximately around 3,000 triangles are formed
for DTLZ2 test case after division of triangles, with 5% below mean area as the
deletion criteria and around 1200 triangles for 10% deletion criteria. One in-
teresting thing is that for DTLZ1 there is hardly any variation in number of
triangles formed with both 5% and 10% deletion criteria and in both case is
around 1,250. Deletion criteria above 10% is not recommended as it hampers
the uniformity.
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Figure 3: Division of the surface into smaller triangles of equal area
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Figure 4: Replacement of triangles with their centroids

4 Clustering and creation of reference set

Now one of the easiest way to collect these vertices to form equi-distribution
of data points is to perform clustering. But before we perform clustering it
is better to perform a boundary adjustment procedure to organise the rough
boundary.
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4.1 Boundary Adjustment

There are two possible ways of boundary adjustment. One method is α-hull
method and other is edge checking method. The former one is more time-
consuming but produces accurate results. There are some problems associate
with edge checking method and we are working to resolve it. If this works well,
then it would be much faster than α-hull method.

4.1.1 α-hull method

For boundary adjustment, the first job is to detect the border. For this we
perform multi-dimensional scaling and transform the data set into 2-D plane
from 3-D. MDS (Multi-Dimensional Scaling) [6] operates on a given matrix of
dissimilarities of distance d(i, j) between the points. The mapping is performed
in such a way that the distances d(i, j) in the original space are maintained as
closely as possible by solving the optimization problem:

min

n∑
i,j=0;i 6=j

(‖zi − zj‖ − d(i, j))2.

The determination of boundary of a set of points in 2-D space is a difficult
task. Convex hull is one such method for shape detection but it is very difficult
to detect boundary for any set of points which are not strictly convex in nature.
From a statistical perspective the problem is reflected by the distribution based
estimation of an unknown set S given a random sample RS of points from S.
For this purpose we use the theory of α-convex hulls [1] which is coded in Mat-
lab. Basically, the concept of convex hulls is generalized. A set S is α-convex if
any point in the complement Sc of S is separable from S using an open ball of
radius α. The α-convex hull then is defined as the smallest α-convex set which
contains RS . By varying the parameter a the degree of considered concavity
can be controlled.It becomes obvious that the α- convex hull converges to the
convex hull with increasing α.

From the given set of already formed collection of vertices of the triangles,
we perform MDS and convert the data-set to 3-D. Over this data set we ap-
ply alpha-hull method to determine the bound of the data set. Now after the
boundary points are detected, we build a piece-wise linear approximation of the
boundary by joining consecutive points on the boundary. The total length of
this piece-wise linear bound is calculated and dividing it by total number of
boundary points we get the required distance between two consecutive points
on the boundary. And now maintaining this required distance we adjust the
positions of the point on the boundary. Thus the job of forming the modified
boundary is complete. Boundary adjustment is a very delicate thing. At the
start of the run there is no need to use boundary adjustment as it adds very
little to the overall result. Algorithm 4 shows the boundary adjustment routine
over the original reference set.
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Figure 5: Boundary adjustment of the reference set

Figure 5 shows the boundary adjustment procedure with the new boundary
and the old one.The red dot shows the old boundary and the green triangles
show the boundary after adjustment. The blue dots represent the remaining
triangle vertices which have been plotted for 20% area cut-off threshold for bet-
ter representation.

4.1.2 Edge Checking Algorithm

The basic idea is to produce a faster edge detection algorithm rather than the
traditional α-hull method. Here from the set of points we first construct a tri-
angulation of the surface. Now for each node in the triangulation we compute
the connectiong nodes for each such node. Now for each edge we compute the
intersection of the set of connecting nodes of the two nodes comprising the edge.
If the intersection produces only 1 node, then the edge belongs to the border.
But in this case, due to some problem in the triangulation, there are situations
where the algorithm exactly detects two borders of the Pareto surface but only
detects partially the other border. We are presently working to resolve this
problem.

Algorithm 5 describes the edge checking algorithm for border detection.
After the boundary is detected the same method of boundary re-adjustment
through linear interpolation model as described before is done.

4.2 Clustering

Clustering algorithm like Fuzzy C-means [3] or K-means [8] serve the purpose
very well. Clustering based on Euclidean distance will produce a nearly uniform
distribution. Figure 6 shows the clustering part and the placement of cluster
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centroids among the triangle centroids. The blue dots are the centroids of the
triangle and the red dots are the cluster centroids or the reference points. Mat-
lab have inbuilt code for both of them.
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Figure 6: Clustering of triangle centroids to produce reference set

[IDX, C] = kmeans(X, K) partitions the points in the N-by-P data ma-
trix X into K clusters. This partition minimizes the sum, over all clusters, of
the within-cluster sums of point-to-cluster-centroid distances. Rows of X cor-
respond to points, columns correspond to variables. It returns the K cluster
centroid locations in the K-by-P matrix C. There is also option for passing the
initial positions of the cluster centroids into the algorithm. For details please
refer to the Matlab manual.

But in Clustering the Cluster centroids are not on the original surface con-
structed but in somewhere else. This is theoretically a wrong concept. There
may be two ways to circumvent this problem. One is to place the Cluster cen-
troid to a point on the nearest triangle plane. This is more accurate process
but quite a time consuming one. As the triangles themselves are very small in
area, we place the Cluster centroid to it’s nearest point in the cluster group.
In that way the final reference points remains the same as that of the previous
case. Figure 7 shows the Original Centroids and Final Centroid after Shifting
to the nearest point in the Cluster group.
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Figure 7: Shifting of Cluster Centroids

Finally Figure 8 shows the ultimate reference set formed after the complete
procedure for DTLZ2 and Figure 9 shows the same for DTLZ1. Algorithm 2 is
the routine for the generation of reference set.
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Figure 8: Final reference front for DTLZ2
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Figure 9: Final reference front for DTLZ1

5 Net archival update strategy

The update strategy is almost similar to that of ∆p SMS-EMOA in 2-D, ex-
cept the fact that we have used the generation of reference front only when it
is needed, i.e. only when the Achieve size crosses NR = 100 so that we need
reference set to compute Averaged Hausdorff distance measure. Also we ob-
serve that in the update often is the case that more than one solution have the
lowest corresponding Averaged Hausdorff distance measure, though their corre-
sponding GD and IGD contribution may not be both same. To circumnavigate
the problem we employ another measure for only those solutions with minimum
Average Hausdorff distance value. Here we reject the solution having the closest
neighboring solution in the archive. The rest of the strategy is same as before.
Algorithm 1 shows the main updation strategy of the ∆p SMS-EMOA in 3-D.
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Algorithm 1 update(x,A,P) ; Updation Strategy of ∆p SMS-EMOA in 3-D

A = Mf (A ∪ {x},≤).
if card(A)> NA then
R =generate ref(P).
for all a ∈ A do do
h(a) = ∆1(A\{a}, R).

end for
A∗ =argmin {h(a) : a ∈ A}.
if card(A∗)> 1 then
for all i ∈ A∗ do do
c(i) = GD({i}, A).

end for
i∗ =argmin {c(i) : i ∈ A∗}.

else
i∗ = A∗

end if
A = A\{i∗}.

end if
return A

Algorithm 2 generate ref(P) ; Generation of reference set from current Pareto
front

tri=delaunay(P).
for each i ∈ tri do

area(i)=area of each i
end for
eliminate triangles in tri with area(i) < 0.05 ∗ ¯area.
for each i ∈ tri do
K = dlog2{

area(i)
min(area)}e.

newtri =divide(tri(i),K).
end for
points =set of vertices of all newtri.
new points=boundary adjustment(points).
C = Kmeans(new points,NR).
Replace each C with the nearest point in it’s own cluster group to form
Refernce Set R
return R
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Algorithm 3 divide(T,K); Division of each triangle into K parts

k = 1.
while k 6= K + 1 do
for i := 1→ 2k−1 do

Divide T into 2 equal parts by drawing median on the longest side.
end for
Replace Ti by it’s divided triangles.
k = k + 1.

end while
return T

Algorithm 4 boundary adjustment(points); Boundary adjustment of the pro-
duced Reference set by α-hull method

¯(points) = MDS(points).
Get boundary by ¯(H) = α− hull( ¯(points)).
Build Linear Interpolation model on the boundary data set H̄ and place NH

boundary points uniformly at regular distance on it.
Use this new set of boundary points and original intermediate points to form
the data set new points.
return new points

Algorithm 5 boundary adjustment(points); Boundary adjustment of the pro-
duced Reference set by edge checking method

Build Tringulation on the set of points to produce tri1.
for each i ∈ points do

Computing the set of connecting nodes neighbori
end for
for each edge e(i, j) ∈ tri1 do
if size(neighbori ∩ neighborj)=1 then

Enlist Edge e(i,j) as the border.
end if

end for
The collection of all the edges form the boundary set H̄ of NH boundary
points.
Build Linear Interpolation model on the boundary data set H̄ and place NH

boundary points uniformly at regular distance on it.
Use this new set of boundary points and original intermediate points to form
the data set new points.
return new points
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6 Results

Now with this updation strategy we form the code of the net algorithm. The
code is written in Matlab and combined with already available code of SMS-
EMOA. For simulation purpose we have simulated the code over DTLZ1 and
DTLZ2 for different number of function evaluations. Here we present the ap-
proximated Pareto front generated by ∆p SMS-EMOA over DTLZ1 for 100,000
function evaluations for 7 Dimensional problem in Figure 10 and for 100,000
function evaluations in DTLZ2 for 12 Dimensional problem in Figure 11. From
the figures presented we can observe that the Pareto front produced is more
or less uniform in nature. The mean of the Averaged Hausdorff distance over
10 runs for 100,000 function evalutions for DTLZ1 is 0.0186 and for DTLZ2 is
0.0522.
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Figure 10: Approximated Pareto front for DTLZ1
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Figure 11: Approximated Pareto front for DTLZ2

7 Conclusion

The construction of equi-distributed reference set in 3-D was the main aim of
this project work. Then producing appropriate updation strategy and combin-
ing the whole code was the next phase of the work. The results of construction
of reference set is certainly satisfactory. Though the result of the net algorithm
is fair, there may be other ways to improve the performance of the net algorithm
with it. Basically the work was a more focus on computational geometry and
producing a good updation strategy. In future there are lot of scope to work for
the better performance of this algorithm. This whole project work was a nice
experience for me and it helped me learn a lot in my way and gather a lot of
knowledge.
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formity test for the case of unknown support. Statistics and Computing,
22(1):259–271, 2012.

[2] N. Beume, B. Naujoks, and M. Emmerich. Sms-emoa: Multiobjective se-
lection based on dominated hypervolume. European Journal of Operational
Research, 181(3):1653–1669, 2007.

[3] J.C. Bezdek, R. Ehrlich, et al. Fcm: The fuzzy c-means clustering algo-
rithm. Computers & Geosciences, 10(2-3):191–203, 1984.

[4] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective
optimization test problems. In Proceedings of the Congress on Evolutionary
Computation (CEC-2002),(Honolulu, USA), pages 825–830. Proceedings of
the Congress on Evolutionary Computation (CEC-2002),(Honolulu, USA),
2002.
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