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The motif discovery problem consists of finding over-represented patterns
in a collection of biosequences. It is one of the classical sequence analysis
problems, but still has not been satisfactorily solved in an exact and efficient
manner. This is partly due to the large number of possibilities of defining
the motif space to be searched and the notion of over-representation. Even
for well-defined formalizations, the problem is frequently solved in an ad-hoc
manner with heuristics that do not guarantee to find the best motif.

In this article, we show how solve the motif discovery problem (almost)
exactly on a practically relevant space of IUPAC generalized string patterns
while using the p-value with respect to an i.i.d. model or a Markov model
as the measure of over-representation. In particular, (1) we use a highly
accurate compound Poisson approximation for the null distribution of the
number of motif occurrences. We show how to compute the exact clump size
distribution using a recently introduced device called probabilistic arithmetic
automaton (PAA). (2) We define two p-value scores for over-representation,
the first one based on the total number of motif occurrences, the second one
based on the number of sequences in a collection with at least one occur-
rence. (3) We describe an algorithm to discover the optimal pattern with
respect to either of the scores. The method exploits monotonicity properties
of the compound Poisson approximation and is by orders of magnitude faster
than exhaustive enumeration of IUPAC strings (11.8 hours compared to an
extrapolated runtime of 4.8 years). (4) We justify the use of the proposed
scores for motif discovery by showing our method to outperform other motif
discovery algorithms (e.g. MEME, Weeder) on benchmark datasets. We also
propose new motifs on M. tuberculosis.

The method has been implemented in Java. It can be obtained from
http://1sll-www.cs.tu-dortmund.de/people/marschal/paa_md/
or from Tobias.Marschall@tu-dortmund.de.



1 Introduction

De novo motif discovery is the task of uncovering exceptional patterns in texts. Espe-
cially in the context of biological sequences, this problem has been extensively studied
in the hope that over-represented motifs carry structural, regulatory, or other biological
significance. Many different measures of “exceptionality” have been proposed. In a re-
view article, Sandve and Drablgs (2006) survey more than hundred published algorithms
for motif discovery. Due to space constraints, we can review only a few of the methods
here.

o Weeder (Pavesi et al., 2004) models motifs as strings. Given a set of sequences,
it searches for motifs which occur (with a bounded number of mismatches) in as
many sequences as possible. This is achieved by a pattern-driven search using a
suffix tree of the given sequences. In an assessment by Tompa et al. (2005), Weeder
outperformed 12 other competitors with respect to most measures.

e MEME (Bailey and Elkan, 1994) is an almost classical alignment based motif
discovery algorithm. Motifs are represented as position weight matrices (PWMs)
and optimized using an expectation maximization (EM) strategy. Altough not as
good as Weeder, MEME performed well in the assessment by Tompa et al. (2005).

e Seeder (Fauteux et al., 2008) is a recently published algorithm that tries to combine
the merits of a pattern-driven search (used in a first phase) and alignment-based
search (used in a second phase).

e MotifCut (Fratkin et al., 2006) approaches the motif discovery problem from a
graph theoretic point of view and represents every k-mer in a given set of sequences
as a vertex. Then, a motif is represented by a subgraph. For motif discovery the
maximum density subgraph is searched.

For a detailed overview of the field, we refer the reader to the review of Sandve and
Drablgs (2006).

Despite all these efforts, the problem has not satisfactorily been solved yet, as shown
in the assessment of 13 common motif discovery algorithms by Tompa et al. (2005).
Recently, steps have been taken to precisely understand what makes the problem so
difficult. Sandve et al. (2007) study the ability of popular motif models (PWMs, TUPAC
strings, mismatch models) to separate the true motifs from the background. Remarkably,
all these models turn out to have comparable discriminative power, but are not sufficient
to capture all motifs. Consequently, they propose a split benchmark set: the first part
contains datasets with motifs that can in principle be recognized and can therefore serve
as a benchmark for algorithms based on such models; the second part contains the
remaining datasets, useful to evaluate more powerful models. Besides the motif model,
the scoring function plays an important role. Li and Tompa (2006) complement their
earlier paper (Tompa et al., 2005) by assessing several scoring functions. They compare,
for each dataset, the predicted motif’s scores to the score of the true motif. The evaluated
scoring functions are the log-likelihood of a PWM (as used by MEME, see Bailey and



Elkan, 1994), z-scores (as used by YMF, see Sinha and Tompa, 2003), and a sequence
specificity score (as used by Weeder, see Pavesi et al., 2004). The authors conclude that
the sequence specificity score outperforms the others with respect to the used dataset,
but is not perfect. They also propose a new score function learned from the used data,
but we are not aware of any motif discovery procedure that optimizes it.

A natural motif score is the probability that, under a suitable background model or null
model, the given motif m occurs at least as frequently as observed in the given sequence(s)
s, that is, P( sl = Occp(s)), where X" denotes the random variable counting the
occurrences of m in a random text of length n. This probability is called p-value or
significance of motif m. The task of computing the p-value or, more generally, the whole
distribution of the occurrence count, in an exact or approximate way is complicated,
because motif occurrences may overlap each other or their reverse complements and
therefore occur in clumps (maximal groups of overlapping occurrences), making simple
moment-based approximations of the distribution inaccurate. The problem has been
studied by various authors, including Régnier (2000); Reinert et al. (2000); Nicodeme
et al. (2002); Lladser et al. (2008); Marschall and Rahmann (2008). All these methods,
however, are too slow to be used directly for exhaustive motif discovery, where one
evaluates the score of each single motif in the motif space.

1.1 Our Contributions

We bring together rigorous motif statistics and motif discovery:

e We demonstrate that a compound Poisson approximation is an excellent approxi-
mation to the exact distribution of occurrence counts. In contrast to earlier meth-
ods, we use the exact clump size distribution in the compound Poisson approxima-
tion. In particular, we show how to use probabilistic arithmetic automata (PAAs,
introduced by Marschall and Rahmann, 2008) to calculate the exact clump size
distribution for a motif under either an i.i.d. or Markovian background model
(Section 2).

e Based on the compound Poisson approximation, we develop a pattern-driven ap-
proach to discover IUPAC motifs with low p-values (either with respect to the total
number of occurrences or to the number of sequences the motif occurs in). The re-
turned motif has the optimal score within a pre-defined pattern space. Exhaustive
search of the motif space becomes possible because we exploit certain monotonic-
ity properties of the Poisson distribution (Section 3), allowing us to prune a large
fraction of the motif space.

e To evaluate the method, we run experiments on a benchmark set proposed by
Sandve et al. (2007). Our method outperforms the other methods evaluated by
Sandve et al. (2007), namely Weeder (Pavesi et al., 2004) and MEME (Bailey
and Elkan, 1994) (Section 4). We also present previously unknown motifs on
M. tuberculosis that are strikingly overrepresented.



1.2 Notation

Let ¥ = {A,C,G,T} be the alphabet of nucleotides and 2% its power set. Define A :=
2%\ {0} and note that each ¢ € A uniquely maps to a IUPAC one-letter code; e.g.
{A, G} corresponds to the IUPAC code R. Let ¥* be the set of finite strings over ¥. Each
m € AN* is called generalized string. We define a motif of length [ to be an element of
A!. In the remainder of this paper, we use the terms motif, pattern, and generalized
string interchangeably. Given a motif m € A* and a string s € ¥*, we write Occy,($)
to denote the number of occurrences of m in s. When S is a set of strings, we define
Occm(8S) := Y cgOccm(s). For a random variable A, its distribution is denoted L£(A).

1.3 Motif Space

Discovering motifs in practice requires us to chose a suitable space of motifs to be
searched. Different motifs models are used in practice, such as PWMs, IUPAC (consen-
sus) strings, string sets, and others. In this paper, we use motifs of length 10 over the
TUPAC alphabet A. We further restrict the space to patterns containing at most six
c € A with |¢| = 2 (IUPAC codes R, Y, W, S, K, M), zero characters with |c¢| = 3 (IUPAC
codes B, D, H, V), and at most two characters with |c¢| = 4 (IUPAC code N). We denote
this motif space by M. It consists of 17,880,633,344 motifs. While this choice may seem
arbitrary at first, the motifs in M are neither too short nor too long nor too specific nor
too degenerate; hence they cover many biologically interesting ones.

2 Approximating the Occurrence Count Distribution

The most principled measure of exceptionality of a motif m is a p-value (or its negative
logarithm) of its observed occurrence count, i.e., score(m) := — log [P(er"‘ > Occp(s)),
where the probability measure P refers to a random sequence model to be specified, and
X" denotes a random variable counting motif occurrences in a random text of length n.
Theoretically, we can compute score(m) for all 17.8 billion m € M exactly with PAAs
(see below), but this would take years of CPU time. Therefore we have developed a set
of techniques to prune a large part of the motif space without missing relevant motifs.

The first technique, developed in this section, is a highly accurate compound Poisson
approximation of £(X"). Section 3 then shows how to exploit monotonicity properties
of this approximation to obtain an efficient motif discovery algorithm.

2.1 Compound Poisson Approximation

As mentioned previously, the main difficulty in obtaining simple accurate approximations
of the occurrence count distribution of a motif lies in the fact that the strings constituting
a motif may occur in clumps.

Definition 1 (Clump). Given a sequence s € ¥* and a motif m € M, a clump is a
mazimal set of overlapping occurrences of m in s.



For example, let m := ACA and s := GACACATTACAAA. Then s contains three occur-
rences of m in two clumps (bold).

To approximate the distribution of the occurrence count, we assume the number of
clumps to be Poisson distributed and the size of each clump to follow a yet unknown
distribution. We further assume that the number of clumps and all clump sizes are
independent. Thus the random number of occurrences is expressed as a sum of a (random
Poisson) number of independent random variables with the same unknown distribution.

Definition 2 (Compound Poisson distribution). Let C be a Poisson distributed random
variable and (B;);en independent, identically distributed random variables with arbitrary
common distribution U := L(B;). Then 210:1 B; is said to have a compound Poisson
distribution CP(\, V), where A = E(C).

Compound Poisson distributions have previously proven useful for approximating oc-
currence count distributions (Schbath, 1995; Roquain and Schbath, 2007). We interpret
B, in Definition 2 as the size of (number of motif occurrences in) the i-th clump.

Stefanov et al. (2007) compare the exact clump number distribution to the Poisson
approximation and find that the latter performs well for rare words, motivating the
above assumption. The Poisson distribution with expectation A is denoted P(\); the
probability to see exactly j clumps then equals P(\)(j) = e - M /4!,

We denote the j-fold convolution of ¥ with itself by U*/. Then the probability mass
function of the compound Poisson distribution can be written as a Poisson-weighted
linear combination of ¥’s j-fold convolutions: CP(X, ¥)(i) = Y50 P(A)(j) - T (4).

We need to compute the exact clump size distribution ¥ and the expected number of
clumps . To compute ¥, we use a framework called probabilistic arithmetic automata
(Marschall and Rahmann, 2008), which we briefly describe below to make this exposition
self-contained.

2.2 Exact Motif Statistics with Probabilistic Arithmetic Automata

In a nutshell, a PAA is a Markov chain plus state emissions (i.e., an HMM) plus a value
set with state-specific arithmetic operations on the values. PAAs provide a unifying
framework for a variety of exact probability computations in sequence analysis. Among
other things, the exact distribution of the occurrence count can be obtained, as shown by
Marschall and Rahmann (2008). Alternative methods to compute the occurrence count
distribution exist (Nicodeme et al., 2002; Boeva et al., 2007; Lladser et al., 2008; Nuel,
2008), but they do not provide a general framework. We briefly re-state the essentials
of the PAA formalism here.

Definition 3 (PAA). We define a probabilistic arithmetic automaton (PAA) to be a
tuple (Q,qo,T, E,(74)qeq, N, no, (Hq)qu), where (1) (Q,qo,T) is a Markov chain: @Q is
a finite set of states, qy € Q is called start state (it may be alternatively replaced by a
probability distribution over all states), (T(p, q))p’qu 1 a stochastic transition matriz.
(2) (Q,q0,T, E, (1q)qeq) is a Hidden Markov Model: E is a finite set called emission
set, each my is a probability distribution on E associated with state q. (3) N is a finite



set called value set, ng € N is called start value, each 0, : N x E — N is an operation
associated with state q.

The semantics are as follows: The automaton begins in its start state gg. In state p,
T(p, q) gives the probability of going to state ¢q. While going from state to state, a PAA
performs a chain of calculations on a set of values N. In the beginning, it starts with the
value ng. Whenever a state transition is made, the entered state, say state ¢, generates
an emission according to the distribution 7,. The current value and this emission are
then subject to the operation 6, resulting in the next value.

Let (Yx)kren, denote the automaton’s random state process, i.e. P(Yj = ¢) is the prob-
ability of being in state g after k steps. Analogously, we write (Zx)ren, and (Vi)ren, to
denote the sequence of emissions and the sequence of values resulting from the performed
operations, respectively. Then Vy = ng and Vi, = Oy, (Vi—1, Zk).

Usually, we are interested in the value distribution after k steps, P(V; = n) for all times
k and values v. These probabilities are obtained from the joint state-value distribution
by marginalization over states; two algorithms to efficiently compute the state-value
distribution are presented in Marschall and Rahmann (2008)

Motif statistics with PAAs. To study pattern matching statistics for a motif m, we first
construct a deterministic finite automaton (DFA) that recognizes ¥*m. This can be done
in a variety of ways, e.g., via the Aho-Corasick automaton of all strings constituting m,
or via a simple linear nondeterministic automaton that recognizes a generalized string,
which is subsequently converted into a DFA using the standard subset construction.

Based on this DFA, we define a PAA which operates on the same state set () and has
the same start state gg. In case of an i.i.d. text model, the transition function 7' can
be derived from the DFA’s transition function by “replacing” all characters with their
probability. For Markovian text models of order k a similar procedure is possible after
cloning each state to accommodate for different k-mer histories.

To count motif occurrences, both emission set and value set are the natural numbers
(or a finite subset thereof). Each state corresponds to a recently read substring; so for
each state’s emission distribution, we employ a deterministic distribution that simply
emits the number of matches to be counted upon entering the state. For convenience,
we denote this number p(q). Note that in this paper usually u(q) = 0 for states that
do not correspond to a word in m and pu(q) = 1 otherwise. In general, for motifs that
consist of words of unequal length, we may have p(q) > 1 for some states.

To sum up the occurrences, we start with value ng := 0 and define all operations to
be additions, that is, 6, : (n,e) — n + e. (In practice, we cut off the distribution at a
maximal value of interest M and set 6, : (n,e) — min{n + e, M }).

The above exposition sketches exact pattern matching statistics with PAAs. For more
details, refer to Marschall and Rahmann (2008). This concludes our review of previous
material on PAAs. Recall that it is impractical to compute the distribution of each
potential motif in M.



2.3 Computing the Exact Clump Size Distribution

We now explain how PAAs can be used to exactly calculate a pattern’s clump size
distribution. By definition, a clump consists of at least one match. We call a match’s last
character match position and consider the first match position in a clump. Further, we
call the distribution of PAA states at such positions clump start distribution and denote
it o; i.e. given that k is the first match position in a clump, then P(Y;=q) =: ¢(q). For
now, we assume ¢ to be known and come back to the task of its calculation later.

If £ > 2 is the length of the given motif, then a clump ends if /— 1 consecutively visited
states do not emit a match. That means we need to keep track of (a) the number of non-
match states consecutively visited and (b) the number of matches the clump contains so
far.

The PAA framework allows us to achieve this by modifying the PAA described in
Section 2.2. We define a new value set N’ := N x N with the start value n{ := (0,0)
and attach the following semantic: If we are in state ¢ and the current value is (h, x),
we have seen h matches in the current clump and the last of these matches occurred x
steps in the past; i.e. if x = 0, a match has been emitted from the current state. We
define the operations accordingly:

0 (ha).c) {(h—i—e,O) if e > 0,’
(h,z+ 1) otherwise.

In other words, if a match has been found (e > 0), we increase the number of matches h
by e and reset the distance to the last match to 0. Otherwise (e = 0, no match occurred),
h remains unmodified, but the number of steps since the last match z is increased.

To incorporate the clump start distribution ¢, we need one additional state g) that
becomes the new start state; consequently, we set Q' := {¢(;} U Q and define the new
transition function to be

T (p.g) ple)  ifp=qp, )
Y T(p,q) otherwise.

In practice, we cannot handle the infinite value set N’. We can, however, truncate
the clump size distribution to be calculated and use the value set N” := {1,..., M} x
{0,...,¢—1} along with adapted operations 0(’1’ . Employing one of the algorithms given
by Marschall and Rahmann (2008), we can then calculate the joint state-value distri-
bution. To make the resulting recurrence better accessible to the reader, we state it
explicitly in terms of the table pi(q, h, z) := IP(Yk =q,Vi = (h, :c))



Lemma 1 (Explicit recurrence relation for py). Let py be defined as above, then

o(q) if u(q) =h and x = 0,
pilg, by = { #@ T @)
0 otherwise.

(

0—2
Z Z pe(d h—w(q),2") - T(q',q) if p(g) >h >0 and z =0,
q'€eqQ x'=0
pr+1(q, h, ) = Z Pk(q/, h,z—1) ~T(q',q) if u(g) =0 and x > 0,
7eq
0 otherwise.

While the lemma can be proven directly from the definition of the p; and 0;, using
the Markov property on the state process, the reader should keep in mind that the PAA
framework makes it unnecessary to state and prove the lemma explicitly, as the whole
mechanism is inherent in the generic PAA state-value computation of Marschall and
Rahmann (2008).

Updating from table py to table py i1 takes O(|Q|* - M - £2) time, as can be seen from
the recurrence. Note, however, that by construction of the PAA from a DFA, each states
out-degree is bounded by the alphabet size. Therefore, the transition matrix is sparse,
and the runtime for an update is bounded by O(|Z| - |Q| - M - £2).

A clump ends if no new match has occurred ¢ — 1 steps after the previous match.
Using the pg, the clump length distribution V¥ is thus given by

\Il(h) :Zzpk(%hafil) (2)

k=0 q€eQ

To actually compute ¥, we start with the initial table p; and iteratively calculate the
tables py for larger k. Each p; contributes to the sought distribution through the inner
sum from Equation (2) and we can successively add the contributions to an intermediate
clump size distribution. Observe that the total probability mass in pg is an upper bound
for the difference between the intermediate clump size distribution and the exact one.
Thus, we iterate until the total probability mass drops under an accuracy threshold. The
number of necessary steps, however, is bounded by O(M -¢), because a clump containing
M matches can have a length of at most O(M -¢). In total, we need O(|Z|-|Q| - M2 - £3)
time to compute the exact clump size distribution. In practice, for motif discovery,
> =4, and M and ¢ are small constants.

State distribution at clump start.

Let us come back to computing the clump start distribution ¢ needed in Equation (1).

The PAA’s state process (Yi)ren, is a Markov chain (see Marschall and Rahmann,
2008) and, hence, the classical theorems (see, for instance, Brémaud, 1999) about exis-
tence of and convergence to an equilibrium distribution apply: Irreducibility and ape-
riodicity are sufficient for convergence to a unique equilibrium distribution. Assuming



a) that a pattern does not start with a wildcard and b) for a Markovian text model of
order k, all (k+ 1)-mers have positive probability of occurring, these conditions can be
verified to be fulfilled by construction of the PAA.

We consider the joint distribution of state and steps since the last match position. We
define Lj as the number of steps since we last encountered a match before step k. Thus

P(Ly=1) = P(M(Yk,z) >0,
(Vi) = o = p(Yi1) = 0).

Again we use the PAA framework to compute the joint state-value distribution £(Y%, L)
for any desired k. The clump start distribution is now given by

plg) = lim P(Yi=q, Li > (] p(Yi) > 0) (3)

In practice, the limits for £ — oo exist and converge in a few steps to double precision.
On a test set of 1,000 motifs from M (see Section 2.5), convergence is reached after
= H4.6 iterations on average.

2.4 Distribution of Clump Number

To complete the construction of a compound Poisson approximation, we need the ex-
pected number of clumps A\(k) in a text of length k and thereby parametrize the Poisson
approximation of the clump number.

The expected number of pattern occurrences E(V}) is easily computed (e.g. Robin
et al., 2005) as E(Vy) = (k—|m|+1)-nm, where n,, is the motif’s (stationary) occurrence
probability at any text position (in other words, its expected number of occurrences in
a string of length |m|). Since we know the exact clump size distribution ¥, we can also

calculate its expectation E[¥] =: ). Then we obtain
E(Vk)
AMk) = ——=.
o)==

2.5 Quality of Approximation

In an earlier article (Marschall and Rahmann, 2008), we presented a method to exactly
compute the distribution of the occurrence count. This gives us the possibility to com-
pare the approximation introduced in the last section to the exact distribution. We
randomly sample 1,000 motifs from the motif space M described in Section 1.3 and
calculate exact distribution and compound Poisson approximation (using clump size
distributions truncated at size 25). To assure a realistic background model, a third or-
der Markov model is estimated from the genome of Mycobacterium tuberculosis. For
background models estimated from other species, similar results are to be expected.
Figure 1 shows boxplots of the relative errors of log-probabilities in the occurrence
count distributions for 0 to 20 occurrences and random texts of length 1,000 and 10,000.
The probabilities themselves range over many orders of magnitude; the probability of
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observing 20 matches lies in an average order of magnitude of 10~43 for text length 1,000
and 10723 for text length 10,000. Therefore, we consider log-probabilities. A relative
error of 4% (for text length 1,000 and 20 occurrences, 75% of motifs have lower error)
here means that we miss the correct order of magnitude (e.g., —43) by 4%. We see
that the relative errors increase towards the right tail of the distributions. This can be
explained by observing that the length of a clump (in terms of number of characters)
is not taken into account by our approximation. When the text “gets filled up” with
occurrences, the approximation becomes inaccurate. Note that 20 occurrences of length
10 would occupy up to 200 characters (depending on overlap). This is one fifth of a 1,000
character sequence. This explains why the accuracy decreases much slower towards the
right tail for text length 10,000 (Figure 1, bottom).

It is worth noting that the occurrence count distributions are governed by an expo-
nential decay towards the right tail. Thus, when calculating p-values (i.e. summing over
a distribution from a fixed k to infinity), errors do not accumulate significantly; i.e. the
summands, and hence the introduced errors, rapidly become insignificantly small.

On average, computing the distribution for text length 1,000 took 97.4ms using the
compound Poisson approximation and 121.1ms using the exact method on an Intel Core 2
Duo CPU at 2.66GHz, running Linux 2.6.24. For text length 10,000 we measured 97.8ms
and 1209.1ms, respectively. Note that the runtime of the approximation is independent
of the text length, while the exact method’s runtime increases linearly with the text
length.

3 Motif Discovery

As stated in Section 2, to evaluate the significance of a motif, we compute the compound
Poisson approximation of its p-value.

Depending on the situation, two different ways of counting occurrences can be rea-
sonable. First, we may consider the total occurrence count in a sequence (or in a set of
sequences) as usual (see Definition 4 below). Second, especially when considering a set
of many short sequences, it may be more desirable to consider the number of sequences
with at least one occurrence instead (Definition 6).

For an i.i.d. background model, we present an algorithm that finds an optimal scoring
motif with respect to either of these significance measures (Sections 3.2 and 3.3). For
Markovian background models, we use the i.i.d. model as a pre-filter (Section 3.4).

3.1 Motif Scores

Assume we are given a finite set of strings S = {si,...,s,} over the alphabet ¥. For
any motif m € M, we write V,,, ¥, and 1, to denote its clump size distribution,
expected clump size and the expected number of occurrences on a string of length |m/|,
respectively. W,,, ¥, and 7, implicitly refer to a (i.i.d. or stationary Markovian) text
model estimated from S. The first score we introduce is the compound Poisson p-value
approximation for the total number of motif occurrences:
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Definition 4 (Total count p-value). For a motif m € M, let a ==Y ¢(|s| —|m|+1)
be the adjusted total sequence length, and define \p, := a - Ny /tm (expected number of
clumps in S) and

ptotal(m) = Z CP (Ama \Ijm) (Z) (4)
i=0ccm (S)
Ocem (S)—1
=1— > CP(Am, ¥m) (i)

i=0
The second measure to be introduced regards the number of sequences that contain

at least one motif occurrence. Before we define it, we make an auxiliary definition to
ease notation:

Definition 5 (Binary distribution D). For A > 0, define

e =
OCE

Notice that for every clump size distribution ¥, we have ¥(0) = 0 and, hence,
D(A)(0) = CP(A, ¥)(0) and D(A)(1) = > 72, CP(A, ¥)(4).

Definition 6 (Sequence count p-value). For a motif m € M, let r,, = ‘{s e §:
Occm(s) > 1}| (number of observed sequences with an occurrence), Am.i := (|si| — |m| +
1) g/t for 1 <i <n (expected number of clumps in sequence i). Define

S|

Pseq(m) =Y (D(Ama) % ... x D(Amn)) (D),

1=Tm

where x denotes the convolution operation.

3.2 Pruning the Search Space

The goal in the next section is to find the motif with the best piorqi(m) or best pgeq(m)
value. To this end, we now present two lemmas of central importance to the practicability
of exact motif discovery based on the above scores. They give, for pioier and pseq,
thresholds for the number of matches necessary to obtain a p-value below a given constant
T. The thresholds can be calculated provided that we know a motif’s expectation 7,
and an upper bound for the expected clump size ¢ > 1.

Let us analyze the right hand side of Equation (4). We can separately consider the
contributions of each possible clump count hidden in the compound Poisson distribution.
When the clump count is at least Occ,,(S), there are necessarily at least Occy,(S)
matches; in this case we do not need to evaluate the clump size distribution! Furthermore,
when parametrizing a Poisson distribution with a decreased expected clump count, the
probability of observing more than k clumps decreases as well (for every k). These two
ideas are formalized in the following lemma.
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Lemma 2 (Monotonicity of pytar). Let m € M, ¢ > 1y, T € [0,1). Define
o (@l
K : max{ke[l\l.;P( > (@) > T}, (5)
where a is chosen as in Definition 4. Then
Tm = 0ccn(S) < K = pita(m) >1T.

Proof. Let U} denote the j-fold convolution of W,, with itself. Starting from Defini-
tion 4, we get

ptotal(m) = Z CP(%, ‘ljm) (z)

=,
= (X P00 wi)a

=T 7=0
=ZP(°Z7*”)@> 3w )

7=0 m 1=Tm
EICOOED WO

Inequality (i) is true because clumps have, by definition, at least size one and, hence,
Z;’irm U (i) =1 for j > rp,. Inequality (ii) holds due to ¢ > v, and the fact that the
cumulative distribution function of a Poisson distribution is monotone in the parameter

A f ryy < K, it follows from (5) that Y222 P(*22)(i) > T. Thus, pyoa(m) >T. O

C

In analogy to the above lemma, we can exploit a monotonicity property of D(Ay, 1) *
. D(Apmn) to get a lower bound for the number of motif occurrences necessary to
obtain a score pseq > T

Lemma 3 (Monotonicity of pgeq). Let m € M, ¢ > by, and T € [0,1). Define
A = (Isil = Im| +1) /e for 1 <i <n, and let
IS
K= max{k ENE<IS]: Y (D) # .. x DN, )) () > T}.
i=k

Then
[{s€S5:0ccm(s) 21} <K = peeg(m)>T.

Proof. Follows directly from the fact that the cumulative distribution function of D( ’ml)*
... D(X,, ,) is monotone in each A} ;.

13



We now explain how to exploit the above lemmas for motif discovery. Our goal is to
find all motifs with a p-value below a given threshold T'. We assume an upper bound to
the expected clump size, denoted ¢ = ¥qe, to be known and come back to its choice
below (for the impatient, ¥4, := 3 works for the motif space M defined in Section 1.3).
Then either lemma provides a lower bound K on the number of necessary occurrences.
Motifs with fewer occurrences do not need to be evaluated in detail.

While the above lemmas help in finding a safe occurrence threshold K, they do not
save us much work yet, since the Poisson parameter in Lemma 2 and the Xm’i in Lemma 3
depend on the frequency of the motif 7,,. The punch line now is that, in an i.i.d. model,
Nm is independent of the order of characters; i.e. 7, is invariant under permutations.

We call a set of all permutations of a motif abelian pattern and write, for example,
C4N3 to denote the set of patterns consisting of four Cs and three Ns. For an abelian
pattern, we compute 7, and derive a threshold for the number of required matches by
applying Lemma 2 or Lemma 3 just once.

Bounding expected clump size.

For the application of Lemma 2 or Lemma 3, an upper bound for the expected clump
size needs to be known. In our implementation, we use the hard-coded value 3.0 as
a bound, which is, from our experience, sufficient for all relevant cases. For the motif
space M considered in this paper, let us verify that the bound holds. The motif with the
largest expected clump size must consist of the most frequent characters. (Otherwise,
replacing all characters with the most frequent one would yield a larger expected clump
size. Wildcard characters representing two characters (R, Y, W, S, K, or M) would have
to be replaced by the wildcard character which represents the most and the second
most frequent character, etc.) Furthermore, the expected clump size grows with the
probability of the most frequent character. We assume p4 = 0.4, pc = 0.1, pg = 0.1,
pr = 0.4, a distribution much more biased than all distributions encountered in known
biological organisms. More biased distributions lead to more extreme clump sizes, as
the more frequent characters can conspire to overlap. Thus, the worst-case motif must
consist of As, Ws (the IUPAC symbol for {A, T}), and Ns. We enumerate all those, calculate
the expected clump sizes and find the largest value to be 2.21, a safe distance from 3.0.

3.3 Exact Algorithm for i.i.d. Background Models

In order to run an exhaustive motif discovery algorithm, the only component missing is
an efficient way to count the number of occurrences of a generalized string in a set of
sequences S. To this end, we walk an annotated suffix tree of S, as introduced by Sagot
(1998). The annotation of the suffix tree nodes with occurrence counts permits a fast
calculation of occurrence counts even for generalized strings (where we need to branch
the search path) and allows us to skip many instances. This technique is often called
pattern-driven search; it has been used by many different motif discovery algorithms
(Sinha and Tompa, 2003; Pavesi et al., 2004; Ettwiller et al., 2005). We skip the details
and refer the reader to Sagot (1998). We obtain the following algorithm:
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1. Construct a suffix tree containing all sequences from S.

2. Enumerate all abelian patterns that constitute the search space M. For each
abelian pattern do:

a) Compute the motif frequency 7,, (constant over all m in the abelian pattern).

b) Compute the distributions in Lemma 2 or Lemma 3 to obtain a lower bound K
for the number of matches necessary for a p-value below T'.

c) Spell instances of the abelian pattern in lexicographic order while walking
the annotated suffix tree, skipping instances where possible. Report motifs
occurring more than K times.

d) For reported motifs, calculate exact clump size distribution and compute p-
value. Output motif if p-value is below T'; discard otherwise.

3.4 Markovian Background Models

In practice, the i.i.d. model is too coarse for genomic motif discovery and higher-order
contexts need to be taken into account. This creates a problem: Instances of an abelian
pattern do not necessarily have the same expectation under a higher-order background
model and, hence, the described algorithm would not be applicable. Even though it can
be modified, it would lose efficiency.

However, we can use a two-stage algorithm as follows: (1) Find all motifs with a p-value
below a threshold T' with respect to the i.i.d. model as described above. (2) Re-evaluate
these motifs with respect to the Markovian model and discard them if their Markovian
p-value is not low enough (they can be explained by inter-character dependencies found
in DNA).

This efficiently discards motifs that have a too high p-value with respect to the i.i.d.
model or the Markov model. It may thus happen that we miss motifs with low Markovian
p-value but high i.i.d. p-value. However, one could argue that such a motif merely
appears interesting because of low background frequencies of its components, not because
of its high occurrence count. While from a computational point of view, this procedure
is thus a heuristic, it has the potential to lead to more biological meaningful (because
more frequent) motifs.

3.5 Suboptimal Motifs

So far, we find the best motif (with respect to either p-value score from Definition 4
or Definition 6). In practice, we are interested in several good motifs. However, good
motifs usually come in groups. For instance, making one character in a motif more
general or more specific will in general not change its p-value very much. Therefore,
we are interested in a set of good independent motifs. The present paper does not
discuss this problem in detail (which has no easy solution). For now, we take a brute-
force approach and initially discover the best motif, report it, mask its occurrences in
S, and re-evaluate the occurrence counts and p-values of the remaining motifs. Motifs
whose p-value then rises above the threshold due to lost occurrences are discarded. The
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Table 1: Nucleotide-level correlation coefficient (nCC) on benchmark suites proposed
by Sandve et al. (2007). The results given for Weeder and MEME are taken
from Sandve et al. (2007).

Benchmark Weeder MEME Our method
Algorithm Markov ~ 0.052 0.082 0.120
Algorithm real 0.110 0.068 0.149

remaining best motif is reported, and the procedure is repeated until no good motifs
remain.

4 Evaluation

4.1 Benchmark Data

Designing good benchmark sets for motif discovery is not trivial. While synthetic se-
quences involve a somewhat arbitrary choice of background- and motif-model, real data
sets are never annotated perfectly. To evaluate our algorithm, we use the carefully
crafted benchmark suites proposed by Sandve et al. (2007). They generated different
datasets by either implanting transcription factor binding site (TFBS) occurrences into
a background generated from a third order Markov model or by extracting their original
neighborhood from the respective genome. For each dataset, they analyzed whether or
not the motif can, in principle, be discriminated from the background by popular motif
models (namely, mismatch models, PWMs, or IUPAC strings). They propose to use
the datasets with good theoretical discrimination to benchmark algorithms and the rest
to benchmark more powerful models. This makes the performance analysis of a new
algorithm more informative, as effects originating from motif model and algorithm are
not mixed up. Consequently, we use their “algorithm” suite to assess our method. This
benchmark suite is again divided into two parts: algorithm Markov and algorithm real.
The former contains true binding sites from the TRANSFAC database implanted into
synthetic backgrounds generated by third order Markov models (50 datasets). The latter
contains the same binding sites in their original genomic context (50 datasets). Refer to
Sandve et al. (2007) for more details on the dataset generation.

For each of the 100 datasets, we estimated an i.i.d. model from the data. Then,
we extracted all motifs with a pse, score below 108 with respect to this i.i.d. model
(10358 patterns on average). Subsequently, these patterns were re-evaluated with re-
spect to a third order Markov model (again estimated from the data for each dataset).
The highest-scoring motif was reported as the result. We used the web service accom-
panying the paper by Sandve et al. (2007) to calculate the nucleotide-level correlation
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coefficient (nCC) defined as follows:

TP - TN — FP - FN
V(TP +FP) - (FP + TN) - (TN + FN) - (FN + TP) ’

nCC :=

where TP, TN, FP, and FN are the numbers of true/false positive/negative predicted
characters (nucleotides). The use of this measure allows an integrated assessment of
sensitivity and specificity.

The obtained scores in comparison to Weeder (see Pavesi et al., 2004) and MEME
(see Bailey and Elkan, 1994) are listed in Table 1. None of the resulting nCC values
indicates good performance, and one could question whether in this range, it has any
meaning at all. Nevertheless, the reported performance represents that state of the
art on this benchmark data set, and the use of the proposed exact exhaustive method
improves the mark somewhat.

We followed Sandve et al. (2007) in choosing Weeder and MEME as competitors,
because, on the one hand, they are known to peform well on this type of benchmark. (In
fact, Weeder outperforms its 12 competitors with respect to most evaluated measures
in Tompa et al., 2005.) On the other hand, they represent different approaches to
motif discovery. While MEME models motifs as position weight matrices (PWMs) and
optimizes them using an expectation maximization (EM) approach, Weeder is based on
mismatch models and employs a pattern-driven search on a suffix tree.

Because of the large number of datasets (100), we ran the algorithm on a compute
cluster. Since it consists of heterogeneous machines (CPU clock rates ranging from
1.6GHz to 2.0GHz), the measured runtimes must be interpreted with care. We give
them in CPU time, i.e. the time a single (average) CPU would have needed to perform
the task. The exact motif search using i.i.d. models took 11.8 CPU hours on average
per dataset. The re-evaluation of top scoring motifs took 10.7 CPU minutes on average
per dataset. Had we performed an exhaustive enumeration and calculated the pge, (With
respect to an i.i.d. model) for each motif separately, the computation would have lasted
approximately 4.8 years per dataset (extrapolated runtime). Our method has provided
a speedup factor of at least 3500 or three to four orders of magnitude.

4.2 Motifs in non-coding regions of M. tuberculosis

Muycobacterium tuberculosis is a species of pathogenic bacteria causing tuberculosis. Its
genome has been completely deciphered (Cole et al., 1998). To demonstrate the utility of
the proposed motif discovery algorithm in a whole genome setting, we search for motifs
in the non-coding (i.e. putatively regulatory) regions of M. tuberculosis. The non-coding
parts of the genome comprise 2,402 regions consisting of 398,419 bp, which is about one
tenth of the whole genome.

We employ the two-stage procedure described in Section 3 to search forward and
backward strand in parallel. In a first phase, we discover all motifs from M with a
p-value below a pre-selected threshold with respect to an i.i.d. model. Here, we choose
a threshold of 1079, resulting in 494,575 motifs. In a second phase, those motifs are
re-evaluated with respect to a third order Markov model derived from the regulatory

17



Table 2: Overview of I[UPAC-motifs found by our method in non-coding regions of M.

tuberculosis.
Motif Expectation Occurrences P-value
1 AGACSCARAA 1.7 122 6.5-10"176
2 GCATCGTCRC 5.2 99 7.1-10788
3 CGWCGWCGNN 195.2 313 1.9-1077
4 CTCCTCMTCR 3.5 7 1.9-10799
5 GGGACGGAAA 0.5 42 3.5-10793
6 NYTCGNCGAR 94.6 191 3.6-10756
7 NNYWGATCWR 120.6 211 3.3-107°2

regions. To obtain several motifs, we used the strategy described in Section 3.5. Due
to the large input, the computations took 247.5 CPU hours for the first phase and 44.7
CPU hours for the second phase; subsequent second phase re-evaluations took less and
less time. Again, the calculations were performed in parallel on a mixed cluster. These
results show that exact motif discovery based on rigorous statistics, although still a
considerable computational burden, now lies within the reach of today’s computers.

To judge whether this computational effort pays off in practice, we again seek to com-
pare our method with other motif discovery algorithms. Unfortunately, many available
software packages are not applicable to this data set. Weeder, for instance, restricts its
search to motifs occurring in at least half of all sequences, which renders it useless in this
setting. One software package usable for our purpose is MEME. We used the command
line version of MEME 4.0.0' compiled on a Linux maschine. To make the competition
as “fair” as possible, we instructed MEME to search for 10 motifs of length 10 on both
DNA strands and allowed any number of motif occurrences in each sequence?. MEME
was run on a 2GHz PC and reported its results after 15.2 hours of CPU time (about
1/20 of our method’s time).

Tables 2 and 3 show the motifs found by our method and MEME, respectively. Both
methods agree on the two top-scoring motifs. The third-best motif discovered by MEME
is as well found by our algorithm. Note that the E-value score reported by MEME
considerably drops from the forth to the fifth motif, i.e. the last six motifs reported are
not strong ones (and therefore maybe noise). But why did our algorithm fail to find the
forth MEME-motif? We calculated the p-value of the IUPAC-string that represented
the PWM returned by MEME best and found it to be 3.6 - 107%°. That means, we
missed this motif due to the quite demanding p-value threshold of 107°°. We did find,
however, four other motifs with an even better p-value, which were missed by MEME. To
our knowledge, the reported motifs are unknown so far. Because of their high statistical
significance, they are excellent candidates for further investigations about their biological

http://meme.sdsc.edu/meme4/meme-download . html
2Precise commandline options: -dna -mod anr -nmotifs 10 -w 10 -revcomp -maxsize 500000
-maxsites 500
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Table 3: Overview of motifs (consensus strings of reported PWMs) found by MEME in
non-coding regions of M. tuberculosis. [* Similar to the reverse complementary

motif.]
Consensus  Occurrences E-value Similar to motif
(in Table 2)
AGACGCAAAA 161 4.6 -1071Y (1)
GCATCGTCGC 115 7.0-107108 (2)
GTTTCCGTCC 44 1.1-1073 (5)*
CGGCGTGTCG 104 1.5-10734 —
AGTCTCCGGA 31 1.8-10714 —
GGGCGGTTCA 41 2.7-107° —
TTCTTGGAAA 32 42.10~1 —
GATCGCAAGC 37 2.1-10715 —
GATCTGAGAC 17 4.4-107 —
AACGTGAACT 23 2.7-1072 —

meaning.

5 Discussion

In this article, we bridge the gap between rigorous motif statistics and motif discovery.
On the motif statistics side, we describe a new algorithm to exactly compute the clump
size distribution with respect to Markovian text models. Furthermore, we experimentally
verify that the resulting compound Poisson approximation is highly accurate. On the
motif discovery side, we show that, in the i.i.d. case, an exact, pattern-driven approach
is feasible in practice. The main “tricks” here are the decomposition of the motif space
into abelian patterns and the use of the monotonicity properties proven in Lemmas 2
and 3. To the best of our knowledge, these properties have not been used before. In
the concluding evaluation, we demonstrate that our method outperforms Weeder and
MEME on the benchmark suite proposed by Sandve et al. (2007). It should be noted
that, to avoid obfuscating the results, we did not perform any post-processing. That
means all returned motifs had a length of ten. Most probably the results can further be
improved by extending the motifs into both directions.

The described motif discovery procedure works equally well when searching forward
and backward strand of DNA in parallel; the PAA used for statistics can be constructed
for a joint motif consisting of both, the forward pattern and its reverse. Another advan-
tage of the approach lies in its parallelizability. Different abelian patterns can simply
be evaluated on different CPUs. Note that, using all cores, the algorithm will evaluate
almost 18 billion motifs in less than 3 hours on a recent quad core system.
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Future Work.

The filtering step can be optimized in several ways: We used a fixed upper bound of 3.0
for the expected clump size and showed that it holds by exhaustively checking it for all
motifs in M. It would be more elegant to have a direct proof and tighter bounds. In the
Markov model, we may be able to skip the i.i.d. filtering step if we can find a tight and
easily computable lower bound on 7, for certain groups of motifs: Note that Lemmas 2
and 3 still hold when 7, is replaced by a lower bound.

Another optimization of practical interest is to speed up and find alternative ways
of formalizing the discovery process of suboptimal motifs. The present brute-force ap-
proach works, but using conditional probabilities given the already discovered motifs
may provide a more elegant solution.

Even though the motif space M was chosen with some care, it cannot cover all po-
tentially interesting motifs. However, we may speculate that most biologically relevant
motifs can be discovered by starting a local hill-climbing search from the M-motifs using
operations such as generalizing / specializing sites of the motif, extending or shortening
the motif at its left or right border. This remains to be evaluated in future work. In any
case, the shortcuts introduced in this paper show that efficient exact exhaustive motif
discovery is now possible for fairly large and biologically relevant motif spaces.

Recently, Hannenhalli (2008) reviewed current trends in transcription factor binding
site (TFBS) search. He points out that better TFBS models and integrative searching
(using additional information as evolutionary conservation, TF interactivity, etc.) are
important lines of future improvements. Therefore, the method we present here should
be seen as one component in a larger pipeline for TFBS discovery. In this context it
may prove especially useful that the presented method returns statistically meaningful
scores.
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