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PLANARITY TESTING FOR C-CONNECTED CLUSTERED

GRAPHS

ELIAS DAHLHAUS, KARSTEN KLEIN, AND PETRA MUTZEL

Abstract. We present a linear time algorithm for testing clustered planarity

of c-connected clustered graphs and for computing a clustered planar embed-

ding for such graphs1. Our algorithm uses a decomposition of the input graph

based on SPQR-trees and is the first linear time algorithm for clustered pla-

narity testing. We define a normal form of clustered embeddings and show
that a clustered graph is clustered planar if and only if any of its normal form

embeddings is clustered planar. We also give a combinatorial characterization

of clustered planar embeddings and show how to test clustered planarity of a
given embedding of a clustered graph.

1. Introduction

In several application domains it is necessary to draw graphs in a way that groups
vertices into clusters. Code packages in Software Engineering tools may for exam-
ple be represented as clusters, large computer networks are often partitioned into
smaller subsets representing local or structural parts of the network, in VLSI design
the building blocks of an electronic circuit should be placed near each other in the
layout, and the members of different departments in a business process model can
be separated by modelling the departments as clusters. Such a clustering structure
may be defined by a rooted tree T representing a hierarchy where the leaves of T are
the vertices of G and each inner node ν of T corresponds to the cluster V (ν) whose
vertices are the leaves of the subtree rooted at ν. In a drawing of a graph with
a given clustering structure, the clusters should be drawn as simple regions, e.g.,
bounded by a rectangle. In many applications it is reasonable to assume that the
clusters induce connected subgraphs, we only consider graphs with this property in
this paper. The complexity of the clustered planarity testing problem for arbitrary
clustered graphs is still open. This paper is organized as follows. Section 2 recalls
known results on clustered graphs, planar embeddings and graph decomposition.
A new combinatorial characterization of clustered planar embeddings is given in
Section 3, where the main components of this characterization are also extended to
be used within skeleton graphs of SPQR-trees. A normal form of clustered planar
embeddings is presented in Section 4. The clustered planarity test for biconnected
graphs is described in Sections 5 and 6, the computation of a clustered planar em-
bedding is given in Section 6, Section 6.3 deals with the time complexity of our
approach, and Section 6.4 presents the extension to general connected graphs.

1.1. Previous Work and Our Approach. Feng, Cohen and Eades introduced
the concept of planarity for clustered graphs. They showed, that a connected
clustered graph C = (G,T ) is c-planar if and only if there is a planar drawing

1A preliminary version of this paper appeared in [5].
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of G such that for each cluster ν in the cluster tree T and its induced subgraph
G(ν), all the vertices and edges of G − G(ν) are in the outer face of the drawing
of G(ν), and gave a quadratic time algorithm to recognize c-connected clustered
planar graphs based on PQ-trees [8]. A related problem, where the input is given
by a replacement system, was studied by Lengauer already in 1986 [13]. Lengauer
gave a linear time algorithm, but the size of the input might exceed the order of the
number of vertices and therefore the time bound is linear in the order of the input
size, but not linear in the order of the number of vertices. Di Battista et al. [1]
gave an approach to planarize non c-planar but c-connected clustered graphs and
described a drawing algorithm based on the topology-shape-metrics approach.

We give an modified version of the work in [5] based on the usage of SPQR-
trees. After the development of the linear time c-planarity testing algorithm in [5],
several characterizations of graph classes were given for which polynomial planarity
testing algorithms are possible without having the condition of c-connectedness.
Cortese et al. [4] consider a class of clustered graphs whose underlying graph is
a cycle, Cornelsen and Wagner [3] study completely connected clustered graphs,
i.e., clustered graphs where for each cluster not only the induced subgraph but
also the induced subgraph of the complement is connected. They show that such
a clustered graph is c-planar if and only if the underlying graph is planar. An
algorithm for testing clustered planarity of so called extrovert clustered graphs,
where disconnected clusters need to fulfill a special connectivity property, is given
by Goodrich et al. [9]. Another interesting class of clustered graphs is studied
by Gutwenger et al. [10] al. They consider clustered graphs where all nodes in the
cluster tree T that correspond to non c-connected clusters lie on the same path in T
starting at the root of T , or where alternatively for each non c-connected cluster its
super-cluster and all its siblings in T are connected. None of these characterizations
have yet led to a promising approach for the general case.

We use an approach based on graph decomposition that uses SPQR-trees to-
gether with a criterion for testing clustered planarity of a c-connected clustered
graph with a fixed embedding. We develop a normal form for clustered planar em-
beddings, show how to compute such an embedding for the input graph in linear
time and show that clustered planarity of the input graph is equivalent to clustered
planarity of any of the possible normal form embeddings for that graph. The final
step then is to apply the testing criterion to the computed normal form embedding
in order to test clustered planarity of the input graph. The graph decomposition
only works for biconnected graphs, we show how to extend the approach to general
connected graphs.

2. Preliminaries

For graph terminology and the basic concepts of graph connectivity and pla-
narity, we refer the reader to [6]. Our basic definitions concerning clustered graphs
follow the work of Cohen, Eades and Feng [7] and the definitions in [5].

A block of a graph is the induced subgraph of a maximal subset of vertices that
is biconnected. A cut vertex is a vertex whose removal disconnects the graph. The
block tree BT of G consists of the blocks of G and the vertices of G as vertices. A
block b is adjacent with a vertex x of G iff x is in b. Two blocks that have a cut
vertex in common are therefore also connected in the block tree by a path over the
cut vertex.



PLANARITY TESTING FOR C-CONNECTED CLUSTERED GRAPHS 3

2.1. Clustered Graphs. A clustered graph C = (G, T) consists of an undirected
graph G and a rooted tree T where the leaves of T are the vertices of G. Each
node ν of T represents a cluster V (ν) of the vertices of G that are leaves of the
subtree rooted at ν. The tree T therefore describes an inclusion relation between
clusters. If ν′ is a descendant of ν in T , then we call V (ν′) a sub-cluster of V (ν).
The subgraph of G induced by V (ν) is denoted by G(ν). For simplicity, we will
identify a node ν in T with the cluster V (ν) in the following. A clustered graph is
c-connected, if each cluster induces a connected subgraph of G. In the following we
assume that the given clustered graph is always c-connected.

2.2. Embeddings and Clustered Planarity. A combinatorial embedding of a
planar graph G is defined as a clockwise ordering of the incident edges for each
vertex of G with respect to a crossing-free drawing of G in the plane. A planar
embedding is a combinatorial embedding together with a specified external face.

A drawing of a clustered graph C = (G,T ) is a representation of C in the plane,
where the underlying graph G is drawn as usual and for each node ν in T the cluster
is drawn as a simple closed region R that contains the drawing of G(ν) such that:
(i) the regions for all sub-clusters of ν are completely contained in the interior of
R; (ii) the regions for all other clusters are completely contained in the exterior of
R; (iii) the drawing of each edge between two vertices of ν is completely contained
in R. The drawing of an edge e and a region R have an edge-region crossing if the
drawing of e crosses the boundary of R more than once.

A clustered graph C is clustered-planar (c-planar for short), if there is an em-
bedding of C into the plane that allows a drawing without edge-edge or edge-region
crossings. Such an embedding is called a clustered planar embedding.

Theorem 2.1. [8] A connected clustered graph C = (G,T ) is c-planar if and only
if G is planar and there exists a planar drawing of G such that for each node ν of
T , all the vertices and edges of G − G(ν) are in the outer face of the drawing of
G(ν).

2.3. Graph Decomposition and SPQR-trees. We shortly describe a graph de-
composition based on SPQR-trees [2]. They comprise a decomposition tree of a
biconnected graph according to its split pairs. A split pair is a pair of nodes that
is either connected by an edge or has the property that its removal increases the
number of connected components. SPQR trees can be efficiently implemented in
linear time [11]. The decomposition allows us to compute a normal form embed-
ding that will be used for the clustered planarity test within our algorithm. Our
description follows the one given in [14].
Construction of SPQR-Trees. Let G be a biconnected graph. The construction
of an SPQR-tree T for G works recursively starting at an arbitrary edge e of G
that is called the reference edge of T . The end-nodes of e are used as the split
pair associated with the first node (root) of T . At every node µ of T , the graph
is split into the split components of the split pair associated with that node, i.e.,
the maximal subgraphs of the original graph, for which p is not a split pair. To
make sure that the split components are biconnected, we add an edge to them and
continue by computing their SPQR-tree. The resulting trees are made subtrees of
the node used for splitting.
Concepts and Elements of SPQR-trees. The two vertices of the split pair p associ-
ated with a node µ are called the poles of µ. Each node µ of T has an associated
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planar st-graph, called the skeleton of µ. The skeleton associated with a split pair p
is a simplified version of the whole graph where some split components are replaced
by single edges.

The pertinent graph of a node µ is the subgraph of the original graph that is
represented by the subtree rooted at µ. Also, each node µ that is not the root of
the tree is associated with an edge e of the skeleton of the parent ν of µ, called
the virtual edge of µ in skeleton(ν). We call node µ the pertinent node of skeleton
edge e, denoted by pert(e). Each edge e in a skeleton represents a subgraph of the
original graph. This graph together with e is called the expansion graph of e.

The decomposition tree with respect to reference edge e is a rooted ordered tree
whose nodes are of four types that are defined by the structure and number of the
split components of its poles:

Q-nodes are the leaves of the tree, there is one Q-node for each edge e in
the graph. The skeleton consists of the two poles that are connected by two
edges, where one edge represents the edge e and the other edge the rest of
the graph.
S-nodes represent a serial structure, the pertinent graph has at least one
cut vertex. The cut vertices v1, . . . , vk split the pertinent graph into the
components G1, . . . , Gk+1. In the skeleton, the Gi are replaced by single
edges, and the edge between the poles is added. The decomposition con-
tinues with the subgraphs Gi, where the poles are vi and vi+1.
P-nodes represent a parallel structure where the poles va, vb have at least
two split components G1, . . . , Gk in the pertinent graph. In the skeleton,
each Gi is replaced by a single edge and the edge between the poles is added.
The decomposition continues with the subgraphs Gi, where the poles are
again va and vb.
R-node None of the other cases is applicable, so the pertinent graph is
biconnected. The poles va and vb are not a split pair of the pertinent
graph. The decomposition now depends on the maximal split pairs of the
pertinent graph with respect to the pair va, vb. A split pair v1, v2 is maximal
with respect to va, vb, if for every other split pair there is a split component
that includes the vertices va, vb, v1, v2. For each maximal split pair p with
respect to va, vb, we define a subgraph Gp of the original graph as the
union of all the split components of p that do not include va and vb. In the
skeleton, each subgraph is replaced by a single edge and the edge between
the poles is added. The decomposition proceeds with the subgraphs defined
by the maximal split pairs.

Figure 1 shows the pertinent graph together with the corresponding skeleton for
an S-, P-, and R-node. We will omit the discussion of Q nodes in the rest of the
paper because they are not needed to code the embedding of the graph G.

If G is 2-connected and planar, its SPQR-tree T represents all combinatorial
embeddings of G. In particular, a combinatorial embedding of G uniquely defines
a combinatorial embedding of each skeleton in T , and fixing the combinatorial
embedding of each skeleton uniquely defines a combinatorial embedding of G.
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Figure 1: Pertinent graphs and skeletons of the different node types of an SPQR-tree
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Figure 2: A graph G and its SPQR-tree (Q-nodes of R- and S-node omitted)

3. Clustered Planar Embeddings

In this section we give a combinatorial characterization of c-planar embeddings
based on a weighting criterion on the dual graph. The combinatorial character-
ization allows us to judge if a fixed embedding is a clustered planar embedding.
But in order to check cluster planarity efficiently we have to consider all possible
embeddings without enumerating them. We will use the fact that SPQR-trees can
be used to represent all possible combinatorial embeddings of a planar biconnected
graph. Therefore we also discuss how to extend the notion of an edge and face
weight to the substructures occurring in SPQR-trees.

3.1. Combinatorial Characterization. Observe that in a c-planar embedding
Γ of a c-connected clustered graph C = (G,T ) , clusters appear as connected areas
without holes. That is, for a cluster ν there may not be any parts of a cluster ν′, that
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is not a descendant of ν in the inclusion tree, enclosed by a cycle K consisting only
of edges in ν. See Figure 4(a). If such an inclusion occurs in a planar embedding
Γ′ of G, i.e., if a hole exists and therefore Γ′ is not c-planar, there has to be some
path connecting nodes in ν′ to nodes on K since G is connected. Due to the c-
connectivity of the clustered graph, at least one of the edges on the path has to
pass through the least common ancestor of ν and ν′ in the cluster tree. We exploit
this property to characterize correct embeddings of c-planar graphs.

Let weight(c) of a cluster c be the number of nodes in c, i.e., the weight may
only increase on a path from a leaf to the root of the cluster tree T . For any edge
e = (v, w), let weight(e) be the weight of the smallest cluster c ∈ C that contains
v and w, which is the least common ancestor of v and w in T . The weight of a face
f , weight(f), is the maximum weight of an edge that belongs to the face cycle of f .
A face f therefore has as weight the maximum weight of the clusters whose regions
share some part with f , which belongs to the least common ancestor of the vertices
on the face boundary in T . We interpret the weights of the faces and edges of G
as weights of the nodes and edges of the dual graph G′ of Γ and G. A hole in a
cluster then corresponds to a cyle of edges with weight at most i − 1 that encloses
a subgraph with weight at least i.

A clustered planar embedding now can be characterized as follows: For each i,
let Fi be the set of faces f of Γ with weight(f) ≥ i and Ei be the set of edges e of G
with weight(e) ≥ i. Let E′

i be the set of edges in G′ corresponding to the edges in
Ei. Then (Fi, E

′
i) represents a subgraph of G′. See Figure 3 for an example. Note

that there cannot be any edges e = (f1, f2) with weight k, where k > weight(f1)
or k > weight(f2).

Theorem 3.1. (Clustered Planar Embeddings) A planar embedding Γ of G =
(V,E) is a clustered planar embedding of G and C = (G,T ) if and only if for each
i with Fi 6= ∅, (Fi, E

′
i) is a connected subgraph of the dual graph of Γ and a face of

maximum weight is taken as outer face.

Proof. Suppose (Fi, Ei) is not connected. Then at most one of its components Ci

can contain the vertex representing the outer face. Let us w.l.o.g. assume that C1

does not contain the outer face. The faces in Fi have an outer cycle Z in G. The
edges of Z are represented in G′ by edges that leave C1. Because C1 is a connected
component of the subgraph consisting of edges with weight at least i, the edges on
Z are of weight at most i − 1. Therefore the vertices that appear on Z are in a
common cluster c of weight at most i − 1. On the other hand each f ∈ C1 is of
weight at least i and therefore contains at least one edge e with weight ≥ i. But
then the vertices incident to e cannot be in c, i.e., Z surrounds vertices that are
not in c and c has a hole. Using the same reasoning, we can show that a face of
maximum weight needs to be chosen as outer face. If a face that has not maximum
weight is chosen as the outer face, then the outer cycle is in a common cluster that
is not of maximum weight and therefore the outer cycle surrounds faces of larger
weight and c has therefore a hole. Vice versa, suppose the cluster c of weight i− 1
has a hole with vertex set H and let Z be the innermost cycle of c that surrounds
H. Then all inner faces f that share an edge with Z are of weight at least i. All
these faces f can reach the outer face (of maximum weight) only through edges of
Z. Therefore the outer face and the inner faces of Z sharing an edge with Z are in
different connected components of (Fi, Ei). ¤
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Figure 3: A c-connected clustered graph with face weights, circles denote clusters
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Figure 4: The same graph as in Fig. 3 with an embedding that is not clustered planar,
the dual graph is not connected for weights ≥ 10

3.2. Extension of the Weight Property. In this section we give an extension
of the weight property defined in Section 3.1 to the faces and edges of the skeletons
in the SPQR-tree. The extension will then be used in Section 4 to compute a
normal form embedding. We start our graph decomposition by selecting an edge
with maximum weight as the reference edge; this edge will later define the outer
face.

3.2.1. Correlation of Faces in Skeletons and Pertinent Graphs. Faces in an embed-
ding of the skeleton graph of a tree node µ correspond to faces in the corresponding
embedding of the pertinent graph of µ in the following way. Let G be the given
graph and pgµ denote the pertinent graph associated with µ, that is, pgµ is a sub-
graph of G. If µ is for example the Q node associated with the reference edge, then
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pgµ is the whole graph G. We say that f is a face of pgµ if all its boundary edges
belong to pgµ. We call f a proper face of pgµ if it is a face of pgµ but not of any pgµ′ ,
such that µ′ is a child of µ in the SPQR-tree. This means that there has to be a
face in the embedded skeleton of µ that can be identified with f up to replacement
of border edges as follows. Let f be a proper face of pgµ, µ′ a child node of µ, such
that pgµ′ contains boundary edges of f , and v and w be the poles of µ′. Then the
boundary edges of f that belong to pgµ′ form a subpath pµ′ of the face cycle of f
starting at v and ending at w (see Fig. 5). Replacing each pµ′ by the (virtual) edge
between the split pair of µ′ defines a face f’ of the embedded skeleton of µ. We call
such a face a proper face of a skeleton to show the correlation to proper faces of
the pertinent graphs. Let sgµ denote the skeleton graph of node µ in the following.
The proper faces of sgµ are exactly the faces that are different from the outer face,
i.e., the faces that are not adjacent to the virtual edge connecting the poles of µ.

v

w

(a) Skeleton

v

w

(b) Pertinent graph

Figure 5: A proper face of the skeleton in a P node, and the corresponding face in the
pertinent graph after expansion. The dashed and the dotted line denote the
two subpaths belonging to child nodes.

3.2.2. Weights in the SPQR-tree. We would like to associate weights of faces of the
embedding of G with weights of corresponding faces (as described in Section 3.2.1)
in the skeletons of the SPQR-tree. Recall that the weight of a face f of G (and
thus also of a proper face of some pgµ) is the maximum weight of a boundary edge
of f . Therefore we would also like to give skeleton edges in the SPQR-tree weights
such that the weight of a face in a skeleton can be defined too as the maximum
weight of the boundary (skeleton) edges and is equal to the desired face weight of
the corresponding proper face in the pertinent graph.

Let g1, . . . , gk be the boundary edges of a proper skeleton face fµ of a node µ and
let f be the corresponding proper face of pgµ. For each gi = (vi, wi) we consider
a path pi in pgµ from vi to wi such that the maximum weight of an edge on pi

is minimized (i.e., a path whose vertices have the smallest least common ancestor
in the cluster tree T ). We call this skeleton edge weights axis weights, denoted by
awgi

, and the paths pi with maximum edge weight equal to the axis weight axis
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in the following. The concatenation of the paths pi forms a cycle C of G that
separates f from the outer face of G.

Lemma 3.2. The weight of any proper face f of pgµ in a clustered planar embedding
Γ is the maximum axis weight of a boundary edge of the corresponding proper face
fµ of sgµ.

Proof. If Γ is a clustered planar embedding and C is the cycle formed by the
concatenation of the axes pi of the boundary edges around fµ, then by Theorem 3.1,
the maximum weight of an edge of C and therefore the maximum axis weight
awmax of a boundary edge cannot be less than the weight of f , otherwise C would
be included in a cluster c of size awmax and surround vertices that are not in c.
On the other hand, the maximum weight of an edge e of C, contained in a path
pi, cannot exceed the weight of f , because then there would be a path on the
boundary of f connecting vi and wi with maximum weight less then the weight of
e, contradicting the definition of the axis weight. ¤

We associate the axis weights of the boundary edges of face fµ with the corre-
sponding pertinent nodes adjacent to µ in the SPQR-tree. Let awµ denote the axis
weight of a node µ in the following, let maxµ be the maximum weight of an edge
in pgµ, and for a face fµ in the skeleton let awfµ

denote the maximum axis weight
of a boundary edge of fµ.

The boundary edges of the outer face of the graph pgµ can be split into two
paths pµ

1 and pµ
2 connecting the poles of µ. We call these paths the outer paths of

pgµ. The weight maxµ cannot appear exclusively in the interior of the pertinent
graphs of the nodes in the SPQR-tree, there has to be an edge of weight maxµ on
one of the outer paths, otherwise a face of weight maxµ would be separated by the
outer paths from the outer face. This fact will be used to obtain a unique normal
form embedding in Section 4.

An outer path of pgµ containing an edge of weight maxµ is called a dominating
outer path. Figure 6 illustrates some of the terms and definitions from this section.

maximum weight
Edge with minimum

Edge with maximum weight

Dominating outer path

Axis

Figure 6: Illustration of an axis and an dominating outer path in a pertinent graph pgµ.

4. Normal Forms of Clustered Planar Embeddings

In this section we develop a normal form of clustered planar embeddings. We use
the idea to swap subgraphs at poles to transfer given clustered planar embeddings
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into a corresponding normal form. We then show how to convert a clustered planar
embedding into a normal form that is unique if we have determined a dominating
outer path for each pertinent graph pgµ. If both outer paths of a pertinent graph
are dominating, we select one of them arbitrarily as the dominating outer path in
the following. The main result will be that a clustered graph has a clustered planar
embedding iff any of its normal form embeddings is clustered planar.

4.1. Characterization of Normal Forms. First, we discuss properties of clus-
tered planar embeddings regarding the dominating outer paths of subgraphs, then
we give a characterization of a normal form of clustered planar embeddings based
on these properties.

v

w

e

f
m

(a) Skeleton of node µ

v

w

f

(b) Pertinent graph of µ

Figure 7: The outer path (dashed line) of the pertinent graph of a skeleton edge e that
lies on the boundary of a proper face fµ of node µ is a part of the boundary
of the corresponding face f in the pertinent graph of µ.

4.1.1. Characteristics of clustered planar embeddings regarding the weight property.
Suppose fµ is a proper face of the skeleton of a node µ in the SPQR-tree and f is
the corresponding proper face of pgµ. If e is a boundary edge of fµ and ν is the
pertinent node of e, then one of the outer paths of pgν is a subpath of the cycle
of the boundary edges of f , see Figure 7. The dominating outer path of pgν can
obviously only belong to f in a clustered planar embedding, if the weight of f , and
therefore awf ′

µ
, is at least as large as maxν , which is a weight on the dominating

outer path. Otherwise the dominating path would be separated and there would be
a hole in the cluster. The reverse conclusion allows a swapping of pertinent graphs
in the embedding:

Lemma 4.1. Let Γ be a clustered planar embedding and let µ and ν be two nodes
in the SPQR-tree, where µ is the parent of ν. Suppose an outer path of the pertinent
graph pgν belongs to the boundary of a proper face f of pgµ and the weight of f is
at least maxν . Then Γ can be converted into a clustered planar embedding Γr , such
that the dominating outer path of pgν belongs to the boundary of f .
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Proof. The result is trivial if the dominating outer path of pgν already belongs to
the boundary of f . Otherwise we want to swap pgν and show that the resulting
embedding is still clustered planar. We assume that in Γ, the dominating outer
path of pgν does not belong to the boundary of f but to the boundary of another
face f ′ of G and Γ. Then f ′ also has a weight of at least maxν . All faces that
belong to pgν have a weight of at most maxν . Let the sets Fi of faces be defined as
in Theorem 1. Recall that by Theorem 1, each Fi is connected in the dual graph of
G and Γ. Denote the set of proper faces in pgν that are in Fi by Fi,ν . Then Fi,ν can
only be non-empty if i ≤ maxν . Since Fi is connected and f and f ′ are the only
faces not belonging to pgν that share boundary edges with pgν , we can leave Fi,ν

only through f or f ′, i.e., the connected components of Fi,ν are adjacent with f or
f ′ (i.e., share boundary edges). When we swap pgν the connected components of
Fi,ν adjacent with f become adjacent with f ′ and vice versa. Therefore Fi remains
connected and the embedding Γr we obtain by swapping pgν is also a clustered
planar embedding by Theorem 1 and the dominating outer path of pgν belongs to
the boundary of f . ¤

We can use the swapping to construct an embedding that takes into account the
dominating outer paths. For the P- and S-nodes of the SPQR-tree, we can even
give a more specific characterization. First we discuss the S-node case.

Corollary 4.2. Suppose µ is a S-node with children ν1, . . . , νk in the SPQR-tree
representing the clustered planar embedding Γ . Then Γ can be converted into a
clustered planar embedding Γr such that the dominating outer path of pgµ is the
concatenation of the dominating outer paths of pgνi

.

Proof. Let p be the dominating outer path of pgµ and let pi be the subpath of p in
pgνi

. Let f be the face of G and Γ having p on its boundary. Note that f does not
belong to pgµ. The weight of f is at least maxµ. Each pi belongs to the boundary
of f and maxνi

is at most maxµ and therefore at most the weight of f . Due to
Lemma 4.1, either pi ist the dominating path of pgνi

or we can swap pgνi
, replacing

pi by the dominating outer path of pgνi
. ¤

Next we consider the case of a P-node, which is slightly more difficult than the
serial case. First we show that in a clustered planar embedding, there has to be
a particular order of the parallel edges with respect to their axis and maximum
weights, because there must not be any cycles of smaller weight around edges of
higher weight. Therefore there may not be any local maximum of the axis weights
besides the weights of the first and/or last edge in the edge sequence.

Lemma 4.3. Let µ be a P-node with children ν1, . . . , νk in the SPQR-tree repre-
senting the clustered embedding Γ , and let the skeleton edges ei corresponding to the
child nodes appear in the sequence e1, . . . , ek in Γ . Then the sequence of the axis
weights of the ei splits into a decreasing sequence awe1

, . . . , awel
and an increasing

sequence awel+1
, . . . , awek

, where one of the sequences might be empty. Moreover,
for i ≤ l, maxei

≤ awei−1
and, for i > l, maxei

≤ awei+1
.

Proof. If the axis weights would not split into a decreasing and an increasing se-
quence, there would be positions i < j < l such that awej

> awei
, awel

. The
concatenation of the axes of pgpert(ei) and pgpert(el) would form a cycle of maxi-
mum edge weight < awej

that separates an edge and therefore also a face of weight
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awej
from the outer face, contradicting Theorem 3.1. To prove the second state-

ment, we first consider the case i < l, i.e., ei is not the last edge in the decreasing
subsequence. If maxei

> awei−1
then the axes of pgpert(ei−1) and pgpert(ei+1) which

both have a maximum weight < maxei
separate an edge and therefore a face of

weight ≥ maxei
from the outer face contradicting Theorem 3.1. For symmetry

reasons, we also have maxei
≤ awei+1

for i > l + 1. We consider the position l and
observe that maxel

≤ awel+1
or maxel

≤ awel−1
, for the same reasons as above. In

the first case, we consider awe1
, . . . , awel−1

as the decreasing and awel
, . . . , awek

as
the increasing sequence. In the second case, we check whether maxel+1

≤ awel+1
.

If this is not the case, for symmetry reasons, we put el+1 into the decreasing se-
quence. ¤

Let e1, . . . , ek and l be as in the previous Lemma. Then e1, . . . , el is called the

decreasing sequence and el+1, . . . , ek is called the increasing sequence of e1, . . . , ek.
We now provide a method to convert the clustered planar embedding Γ into a

clustered planar embedding Γr such that the maximum weight of the non-dominating
outer path of pgµ is minimized.

Assume that ei and ej belong both to the decreasing subsequence or both to the
increasing subsequence. Then either awei

≤ maxei
≤ awej

or vice versa.
Now assume that ei and ej are any parallel edges in sgµ. We say that ei and

ej overlap if neither awei
≤ maxei

≤ awej
nor awej

≤ maxej
≤ awei

. That
means if ei and ej overlap then they cannot both belong to the increasing or the
decreasing subsequence. The overlap graph of µ, denoted by Oµ, consists of the
vertex set {e1, . . . , ek} and the edges (ei, ej) such that ei and ej overlap. Connected
components of Oµ are called overlap components of µ. Observe that ei and ej belong
to the same subsequence if they can be joined by a path of the overlap graph of
even length and that ei belongs to the decreasing and ej belongs to the increasing
subsequence (or vice versa) if they can be joined by an odd length path of the
overlap graph, just because subsequence membership alternates along a path in an
overlap component.

From our observations follows that if we fix for one edge ei in a overlap component
C of µ that it belongs to the increasing subsequence then we also know for each
ej of C whether it belongs to the increasing or to the decreasing subsequence of
e1, . . . , ek independent of the particular clustered planar embedding. We extend
the notions of maximum weight and axis weight to overlap components. Let maxC

denote the maximum maxei
with ei ∈ C and awC the minimum awei

with ei ∈ C.

Lemma 4.4. If C and C ′ are different overlap components of µ then either awC ≤
maxC ≤ awC′ or awC′ ≤ maxC′ ≤ awC .

Proof. Two edges ei and ej overlap if and only if the open intervals (awei
,maxei

)
and (awej

,maxej
) intersect or if for one of them, say ei, awei

= maxei
, awei

∈
(awej

,maxej
). For any overlap component C, the union of the intervals (awei

,maxei
)

with ei ∈ C is (awC ,maxC): The union of the intervals (awei
,maxei

) with ei ∈ C
is a union of open intervals (a, b) with a > awC and b < maxC . We only have
to show that each x ∈ (awC ,maxC) belongs to some (awei

,maxei
) with ei ∈ C.

Assume this is not the case. Then we can partition the ei ∈ C into small ei where
(awei

,maxei
) ⊂ (awC , x) and large ei where (awei

,maxei
) ⊂ (x,maxei

). No small
ei overlaps with a large ej and there are small and large ei. Therefore C is not
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connected in the overlap graph which is a contradiction. As a consequence, the in-
tervals (awC ,maxC) and (awC′ ,maxC′) must be disjoint. If for one of the overlap
components, say for C, awC = maxC , then aw(C) /∈ (awC′ ,maxC′). This proves
the Lemma. ¤

Lemma 4.5. A clustered planar embedding Γ can be converted into a clustered
planar embedding Γ ′ with the following property: If µ is a P-node with children
ν1, . . . , νk in the SPQR-tree representing Γ , and the subgraphs pgνi

appear in this
sequence in Γ′, then for each overlap component C of µ, the ei ∈ C with maxei

=
maxC appears in the increasing subsequence of e1, . . . , ek, where ei is the skeleton
edge corresponding to node νi.

Proof. Let C be an overlap component. Assume that the ei with maxei
= maxC

belongs to the decreasing subsequence of e1, . . . , ek. Let C≤ be the union of overlap
components C ′ with maxC′ ≤ maxC and let gj be the largest index, such that
gj ∈ C≤. Note that awei−1

and awej+1
are at least maxC . Therefore also the

weights of the face fj consisting of an outer path of pgpert(ej) and an outer path
of pgpert(ej+1) and of the face fi−1 consisting of an outer path of pgpert(ei−1) and
an outer path of pgpert(ei) are at least maxC because the (axis) weight of the

corresponding faces f j
µ and f i−1

µ in sgµ are at least awej+1
. We can view C≤

as a component Gµ and set SC := ∪ei∈C≤
pgpert(ei) (the edges in the pertinent

graphs of the skeleton edges in C≤). The outer paths of SC are the outer paths
of pgpert(ei) and pgpert(ej) that belong to fi−1 and fj . The dominating outer path
of C is the outer path belonging to pgpert(ei). We can swap HC and the resulting
planar embedding is still clustered planar by Lemma 4.1. The maximum weight
edge ei of C now belongs to the increasing subsequence. We have to do this with
every overlap component.

While swapping C≤, also all C ′ with max(C ′) < max(C) are swapped. Therefore
we start with the overlap component C with maxC maximal. If maxC belongs to
the decreasing sequence we only reverse the enumeration e1, . . . , ek. Then we put
the overlap component with the second largest maximum weight into the right
position as explained above, and we continue with the overlap component with the
third largest maximum weight and so on. ¤

4.1.2. The Normal Form Embedding. Using the results from Section 4.1.1, we can
state the following Theorem:

Theorem 4.6. Each clustered planar embedding Γ can be converted into a clustered
planar embedding Γnf that satifies the following conditions:

Let µ be a node in the SPQR graph that represents the embedding Γnf .

(1) If µ is an S-node with children ν1, . . . , νk, then the dominating path of pgµ is
the concatenation of the dominating paths of the subgraphs pgνi

.
(2) If µ is a P-node with children ν1, . . . , νk, where in Γnf the pgνi

appear in
the given sequence from 1 to k, then either the maximum weight maxνi

of
each overlap component appears in the decreasing subsequence of e1, . . . , ek

where νi is the pertinent node of skeleton edge ei or the maximum weight
weight of each overlap component appears in the increasing subsequence of
e1, . . . , ek.

(3) If e is an skeleton edge of µ then one of the following two conditions is
satisfied:
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• e is an inner edge of sgµ (i.e., the outer paths of pgpert(e) are not on
an outer path of pgµ), and for the proper faces f1 and f2 of pgµ that
contain the outer paths of pgpert(e) (i.e., the corresponding proper faces
f ′
1 and f ′

2 in sgµ share e as their boundary edge), the dominating outer
path of pgpert(e) is at the boundary of the fj that has the larger weight.

• e is not an inner edge of sgµ (i.e., the outer path of pgµ contains
an outer path of pgpert(e)), f is the proper face of pgµ that shares
an outer path with pgpert(e) (i.e., the corresponding proper face f ′ of
sgµ is the only proper face of sgµ that has e as boundary edge), and
the dominating outer path of pgpert(e) is on the boundary of f if and
only if maxe ≤ weight(f).

We call the embedding Γnf a normal form embedding.

4.2. Construction of a Unique Normal Form Embedding. In order to have
a unique normal form embedding that is independent from the given particular
embedding Γ, regardless whether it is clustered planar or not, we introduce the
following rules that make our decisions well-defined:

(1) If both outer paths of pgµ are dominating, we select one of them as the
dominating outer path.

(2) We sort the faces of G with respect to their axis weight of the corresponding
face in some skeleton graph to a sequence f1, . . . , fk and if we have to select
one of the faces fi and fj of maximum weight, we select the one with
maximum index i or j.

(3) We sort the nodes of the SPQR-tree in the first priority by their axis
weight and in the second priority by their maximum weight to a sequence
µ1, . . . , µk. Note that if µ is a P-node with skeleton edges e1, . . . , ek, then we
can construct a normal form embedding such that the decreasing/increasing
subsequence is also decreasing/increasing with respect to the index in the
sorted list.

We construct Γnf bottom up. The embedding of each Q-node is uniquely deter-
mined. For S- and R-nodes, the embeddings are uniquely determined up to reversal.
For P-nodes, there is only one sequence e1, . . . , ek such that for each overlap com-
ponent C, max(C) appears in the increasing subsequence when the decision rules
are applied. If the embedding of the skeleton of each child node ν of a node µ in
the SPQR-tree is uniquely determined up to reversal, then the dominating outer
path of each pgν is uniquely determined by our decision rules. Therefore also the
embedding of pgµ is uniquely determined up to reversal when we apply the decision
rules.

Note that the construction of Γnf is independent of any particular embedding Γ.
We can convert any embedding Γ to Γnf and if Γ is a clustered planar embedding,
we can convert it to the clustered planar embedding Γnf . Vice versa, we can reverse
the conversion, and if Γ is also a normal form embedding then clustered planarity
is preserved. We therefore get the following result:

Theorem 4.7. A graph G and a clustering C have a clustered planar embedding
if and only if any normal form embedding of G and C is clustered planar.
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5. Clustered Planarity Testing Algorithm

In Sections 5 and 6 we describe the clustered planarity testing algorithm that
is based on the concepts introduced in the previous sections. Section 5 states how
the axis and maximum weights as well as the dominating outer paths and also
the skeleton embeddings can be determined. Section 6 shows how to compute the
normal form embedding and apply Theorem 3.1 efficiently. We first consider the
case where the whole graph is biconnected and then give a sketch on how to derive
an algorithm for the general case of connected graphs.

5.1. Overview. The main steps of the clustered planarity testing algorithm are as
follows:

(1) First we compute an SPQR-tree for the given graph and determine the
axis weights and the maximum weights of the skeleton edges, which are
independent of the embeddings of the skeleton graphs.

(2) We determine embeddings for the skeleton graphs sgµ of the SPQR-tree
according to the rules of our normal form embedding.

(3) We determine the (axis) weights of the proper faces of each sgµ depending
on the computed embedding of the skeleton graphs.

(4) We determine the dominating outer paths of the skeleton graphs, which
are projections of the dominating outer paths of the subgraphs pgµ to sgµ.
Note that each path of pgµ joining two vertices of sgµ projects to a path of
sgµ.

(5) For each node µ with child node ν in the SPQR-tree, we determine how
pgν has to be embedded relative to pgµ to get a normal form embedding.
This relative embedding of µ and ν depends only on the skeletons of µ and
ν and the axis and maximum weights of their edges.

(6) We merge the relative embeddings to one embedding Γ that is a normal
form embedding.

(7) We check that Γ is a clustered planar embedding using Theorem 3.1.

5.2. Assignment of Axis and Maximum Weights for the Skeleton Edges.

The maximum weights can be assigned as follows: For each leaf-node (Q-node)
µ with edge e, we just assign maxµ := weight(e). If µ is a node with children
ν1, . . . , νk in the SPQR-tree (not a leaf), then maxµ := max(maxν1

, . . . ,maxνk
).

This can be done in linear time with respect to the size of the derivation tree and
therefore also in linear time with respect to the size of the graph G.

The axis weights are more difficult to compute. We use a minimum spanning
tree with respect to the weights of the edges and take care that we do not lose our
linear time bound. The edges of G can be divided into two classes depending on
their position in the spanning tree and the class types can then be used to derive
the axis weights.

First we compute a minimum spanning tree TS of the whole graph G with respect
to the edge weights in linear time using the following result:

Lemma 5.1. Given a clustered graph C = (G,T ), a spanning tree TS of G is a
minimum spanning tree of G with respect to the edge weights if and only if for each
cluster c of C, TS restricted to c is a single tree (not a forest).

Proof. First we show that any spanning tree where some cluster of C does not
induce a subtree is not a minimum spanning tree, i.e., for every minimum spanning
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tree, each cluster induces a subtree. Let S be TS restricted to c. We assume that
S is not a tree, i.e., S is not connected. Since G restricted to c is connected, we
can find two connected components S1 and S2 of S, such that there is an edge
(u, v) of G that joins a vertex u of S1 with a vertex v of S2. There is also a path
p from a vertex u′ in S1 to a vertex v′ in S2 such that all inner vertices of p do
belong to TS but not to S1 or S2. Let (u′, x) be the first edge of p. x is also not
in c, otherwise x would belong to S1. Therefore the weight of (u′, x) is greater
than the size of c. On the other hand, the weight of (u, v) is at most the size of c.
Therefore, if we replace in TS the edge (u′, x) by (u, v), we still get a tree, and the
sum of the weights decreases. Vice versa, we show that all spanning trees with the
property that each cluster induces a subtree have the same weight sum. Note that
TS remains a tree if we shrink any cluster to a vertex, because any cluster induces
a subtree. Let c be a cluster and c1, . . . , ck be its child clusters. Then the number
of edges (u, v) of TS , such that c is the smallest cluster containing u and v is k−1.
The sum of the edge weights of these edges (u, v) is therefore (k − 1)|c|. Let kc be
the number of child clusters of the cluster c. Then the weight sum of TS is therefore
∑

c∈C (kc − 1)|c|. This is true for every TS such that each cluster c ∈ C induces a
subtree. ¤

Using Lemma 5.1, we determine TS in linear time as follows:
For each cluster c, let Ec be the set of edges e ∈ E such that c is the smallest

cluster containing both end vertices of e. We contract the child cluster of c, i.e.,
we replace each edge e = uv of Ec by cucv where cu and cv are the child clusters
of c that contain u and v respectively. For each cluster c, we compute a spanning
tree Tc of Ec. Note that all edges in Ec have the same weight. Now the tree T ′

c

arises from Tc by replacing each edge cucv of Tc by one edge uv. Then the union of
all T ′

c is a minimum spanning tree TS , i.e., a spanning tree, such that each cluster
induces a subtree.

Next we root TS at the vertex x where x is one of the two vertices of the reference
edge. Now consider any inner node µ of the SPQR-tree with poles u and v and
pertinent graph pgµ. We divide the inner nodes into two classes depending on the
position of their poles within the spanning tree.

Introverted nodes are nodes whose poles are on a single path from the root to a
leaf of the spanning tree, i.e., the parent of u or the parent of v in TS is in pgµ, see
Figure 8.

Social nodes are nodes whose poles are in two different paths from the root to a
leaf of TS , i.e., the parents of u and of v in TS are not in pgµ.

Observe that for a social node µ the spanning tree TS restricted to pgµ splits
into two trees Tu

µ with root u and T v
µ with root v. Any path of pgµ from u to v

contains an edge e of G with one vertex in Tu
µ and the other vertex in T v

µ . We call
such an edge a connecting edge of pgµ.

No we can easily derive the axis weights from the type of the node as follows:

Lemma 5.2. If µ is an introverted node of the SPQR-tree with poles u and v, then
the axis weight awµ of µ is the maximum weight of an edge on the unique path from
u to v in TS. If µ is a social node, then awµ is the minimum weight of a connecting
edge of pgµ.
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Proof. Consider the smallest cluster c that contains u and v and that remains
connected if we restrict it to pgµ. We use the fact that awµ is the size of c. This
follows from the following points:

• If there is a path from u to v in pgµ with maximum weight w then u and
v are in a connected component of a cluster c of size w restricted to pgµ.
Since clusters are connected in G and u and v separate pgµ from the rest
of the graph, G restricted to pgµ ∪c is connected.

• If pgµ ∪ c is connected and contains u and v, then there is a path from u to
v using only vertices in pgµ ∪ c. Such a path has maximum weight ≤ |c|.

From Lemma 5.1 we know that the unique path from u to v in TS solely consists
of vertices of c if µ is introverted. Therefore the maximum weight on this path is
at most |c|, i.e., the axis weight awµ. If the maximum weight would be less, this
path would contradict the definition of the axis weight.

If µ is social then the weight of any connecting edge of pgµ cannot be smaller
than the axis weight of µ. But then there has to be a connecting edge with weight
awµ because awµ is the size of c. ¤

(a) Social node (b) Introverted node

Figure 8: Location of the poles of introverted (right) and social (left) nodes in the span-
ning tree TS , thick edges denote tree edges, dotted edges are not in the span-
ning tree.

To compute the axis weights efficiently, we proceed recursively, i.e., determine the
axis weights of a node µ from the axis weights of the child nodes using Lemma 5.2.
If we know the axis weights of all skeleton edges of µ, then we can derive the axis
weight of µ in the same way as we determine the axis weight of µ from the weights
of the edges in the pertinent graph pgµ.

Lemma 5.3. Let µ be a non-leaf node in the SPQR-tree with poles u and v.

(1) If µ is introverted then the skeleton edges of µ whose pertinent node is
introverted form a tree Tµ with the same root as TS restricted to pgµ. The
axis weight of µ, awµ, is the maximum axis weight of an edge on the unique
path from u to v in Tµ.

(2) If µ is social then the introverted skeleton edges of µ form two trees Tu
µ and

T v
µ with u and v respectively as root. The axis weight of µ, awµ, is the

minimum axis weight of a skeleton edge joining a vertex of Tu
µ and a vertex

of T v
µ (we call these edges also the connecting edges of the skeleton of µ).
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Proof. Let Tµ be the set of introverted edges of sgµ and let x be a vertex of sgµ.
There is exactly one edge (x, y) of TS , such that y is the TS-parent of x. There
is at most one edge ex of sgµ, such that (x, y) is in pgpert(ex). Moreover, if x is
not u or v, there exists such an edge ex and this edge is introverted. Furthermore,
each introverted edge of sgµ is such an ex for some x. Let x and px be the vertices
incident with ex, i.e., nodes in sgµ. Then we can consider px as the parent of x in
Tµ and px is an ancestor of x in TS . Therefore Tµ has no cycle and is a forest. If µ
is social then Tµ splits into two trees, otherwise µ is introverted and Tµ is a tree.
Suppose µ is introverted. Then each edge on the unique path from u to v in TS is
in some pgpert(e′ ), such that e′ is on the unique path from u to v in sgµ. This is in
particular true for the maximum weight edge e on the unique path from u to v in
TS . By Lemma 5.2, the edge e′ of sgµ such that pgpert(e′ ) contains e has the same
axis weight as the weight of e. Therefore the axis weight of µ is the maximum axis
weight of an edge of Tµ on the unique path from u to v. Now suppose µ is social
and let e be a connecting edge of pgµ. Note that also the edge e′ of sgµ, such that
pgpert(e′) contains e is social. Moreover, all connecting edges of pgpert(e′) are also
connecting edges of pgµ. If e is a connecting edge of pgµ of minimum weight, then
e is also a connecting edge of pgpert(e′) of minimum weight. On the other hand, if
e′ joins a vertex of Tu

µ and of T v
µ , then also e′ is social, and all connecting edges

of pgpert(e′) are connecting edges of pgµ. Each connecting edge of such pgpert(e′)

therefore has a weight that is at least the axis weight of µ. Therefore the axis
weight of µ is the minimum over the axis weights of edges e′ of sgµ connecting a
vertex of Tu

µ with a vertex of T v
µ . ¤

We can efficiently check if a node µ with poles u and v is introverted, by checking
that one of the Q-nodes, that correspond to edges connecting u and v with its
respective parent in TS , is a descendant of µ in the SPQR-tree. This can be done
in linear time with a simple preprocessing of the SPQR-tree. Let µ be introverted.
Note that for the components pgpert(e) that correspond to skeleton edges e that are
passed by the unique path from u to v the nodes pert(e) are also introverted. We
determine a subforest TI of the SPQR-tree consisting of the introverted nodes. The
children of µ in TI are pertinent nodes of the edges in Tµ that are on the unique
path from u to v in Tµ. The axis weight of µ is the maximum axis weight of a child
of µ in TI .

If µ is social, then we determine the subforest TSoc of the SPQR-tree consisting
of the social nodes. The children of µ in TSoc are the nodes with one pole vertex
in Tu

µ and the other one in T v
µ , i.e., the connecting edges of µ. The axis weight of

µ is the minimum axis weight of a child of µ in TSoc.
Following Lemma 5.3, we get the axis weight of µ by determining the axis weight

of the children of µ in TI or TSoc and taking the maximum or minimum, respectively.
This can be done in linear time. We therefore have

Proposition 5.4. The axis weights of the skeleton edges can be computed in linear
time.

5.3. Computation of Embeddings for the Skeleton Graphs. We need to
compute embeddings for the skeleton graphs of the S, P, and R-nodes of the SPQR-
tree. For the rigid case in R-nodes there is a unique combinatorial embedding up
to reversal. The combinatorial embedding of the path for the sequential case in S-
nodes is unique, too. For the skeleton graphs of P-nodes we have to find a normal
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form embedding, i.e., a sequence e1, . . . , ek of the parallel edges that splits into a
decreasing and an increasing sequence that satisfy the conditions of Theorem 2.
The strategy to compute an embedding for the skeleton of a P-node µ is as follows:

(1) Instead of computing the whole overlap graph of µ we only compute a
spanning forest O′

µ. We then also know the overlap components.
(2) For each edge in sgµ we determine whether it belongs to the decreasing or

the increasing subsequence. For each overlap component C, we select a eC

with maximum maximum weight and put it into the increasing sequence.
(3) We know for each overlap component the elements of the decreasing sub-

sequence and of the increasing subsequence and can therefore derive the
sequence e1, . . . , ek which gives us an embedding of the skeleton graph.

5.3.1. A Spanning Forest of the Overlap Graph. Remember that the union of the in-
tervals (awei

,maxei
) of an overlap component C forms an open interval (awC ,maxC).

Therefore if awC < a < maxC then there is an e ∈ C with awe < a < maxe. If
some e′ ∈ C has smaller axis weight than e, then awC < awe′ . On the other hand,
if awe overlaps with some e′′ then awe < maxe′′ and therefore awe < maxC . It
follows that if there is a e′ with smaller axis weight than e in the same overlap
component C, then awC < awe < maxC . We then can conclude that there is a
e′′′ ∈ C with awe′′′ < awe < maxe′′′ , i.e., e′′′ overlaps with e and has smaller axis
weight than e. Hence we have the following:

Lemma 5.5. If the overlap component containing edge e also contains an edge e′

with smaller axis weight than e, then e overlaps with an e′ with smaller axis weight
than e.

We know now, that if an e overlaps with an e′ of smaller axis weight, we can use
such an e′ as parent of e in the spanning forest of the overlap graph. But this does
not determine the whole spanning forest. We only know that if e has no parent,
then awe = awC where C is the overlap component containing e. There might be
several edges ei in C with awei

= awC . Observe that if awC < maxC such an ei

can only belong to C iff awei
< maxei

. If awei
= maxei

its maximum weight is less
than or equal to any axis weight of edges on C. For the backward direction, the
intersection of the intervals (awei

,maxei
) and (awC ,maxC) is non-empty and we

can pick any x of the intersection and any e′ ∈ C with awe′ < x < maxe′ so that e
and e′ overlap.

Observe also in general that if awe = awe′ < maxe′ ≤ maxe then e and e′

overlap. If there is a e′ with awe′ = awe < maxe′ < maxe we can take such a e′ as
parent of e.

We now have the following situation: If e and e′ belong to the same overlap
component and have no parent then they coincide in the weight and in the maximum
weight and the axis weight is smaller than the maximum weight. Therefore if the
parent of e is not defined but maxe > awe then we have to check whether there is
another e′ with awe′ = awe and maxe′ = maxe. We consider e and e′ as equivalent
if they conincide in max and aw and the axis and the maximum value are different.

We observe that we can order the equivalent edges e in any way, and just the
predecessor of edge e can be taken as parent of e. We use the observations above
and proceed as follows:



20 E. DAHLHAUS, K. KLEIN, AND P. MUTZEL

(1) We sort the skeleton edges of µ in the first priority by their axis weight and
in the second priority by their maximum weights to a sequence e1, . . . , ek.
This can be done in linear time by bucket sort.

(2) If there is a ej with j < i and maxej
> awei

then we can take such ej as
parent par(ei) of ei. To do this efficiently, we proceed as follows:
(a) We determine for each i > 1, max′(ei) := maxj<i(maxej

), i.e., the
maximum max value of a ej with index smaller then i.

(b) For each maximum weight m, we determine the smallest index i(m),
such that maxei(m)

= m. This can be done in linear time by bucket
sort.

(c) For each ei with max′(ei) > awei
we assign par(ei) := ei(max′(ei)), i.e.,

the parent of ei is an ej with max(ej) = max′(ei) of smallest index j.

Our main result is now

Proposition 5.6. Spanning forests of the overlap graphs Oµ of µ can be determined
in linear time.

5.3.2. The partition of overlap components into decreasing and increasing subse-
quence. First we check whether an edge ei of sgµ belongs to the increasing or the
decreasing subsequence of the skeleton edges e1, . . . , ek. Note that overlap compo-
nents and nodes of O′

µwithout a parent are in a 1-1-correspondence. We proceed
as follows:

(1) We determine for each overlap component C of µ, maxC and a eC ∈ C
with maxeC

= maxC . That means, we determine for each e of sgµ that
has no parent in O′

µ, the number maxC of that C with e ∈ C , i.e., the
maximum maxe′ of a descendent e′ of e in O′

µ (including e). For this C,
we determine eC . If e has proper descendants, i.e., C has more than one
element, this eC is the ei of minimum index such that maxei

= maxC ,
which means eC = i(maxC). If e has no proper descendants then eC is just
e.

(2) To check whether e belongs to the increasing or the decreasing sequence,
we check if it has an odd or even distance from some eC in the spanning
forest O′

µ.

We know now whether an edge e in sgµ belongs to the decreasing or the increasing
subsequence of e1, . . . , ek, but we do not know the position of e in e1, . . . , ek yet.

We use our sorting e1, . . . , ek with respect to the axis and maximum weights
from Section 5.3.1 as follows: Let F1(ei) = 1 and F2(ei) = 0 if ei belongs to the
decreasing subsequence and F1(ei) = 0 and F2(ei) = 1 if ei belongs to the increasing

subsequence. This ei is the lth element of the decreasing subsequence if
∑F1(ej)

j≥i = l

and ei belongs to the decreasing subsequence, and it it the lth element of the

increasing subsequence if
∑F2(ej)

j≤i = l and it belongs to the increasing subsequence.
The final sequence e1, . . . , ek is then just the concatenation of the decreasing and

the increasing subsequence.
All steps can be done in linear time. We can now state the main result of this

subsection:

Proposition 5.7. For all P-nodes, the embeddings of the skeleton edges represented
by the sequence e1, . . . , ek can be computed in linear time.
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5.4. Determining the Dominating Outer Paths of the Skeleton Graphs.

We assume that µ is a P- or R-node in the SPQR-tree, so that the embedding of
the skeleton is now fixed up to reversal (Remember that in an S-node, the skeleton
consists simply of a path between the poles representing the serial structure, and
an additional edge connecting the poles). Let u and v be the poles of µ. Note that
any path p from u to v in pgµ projects to a path p′ from u to v in sgµ. This path p′

contains just those edges ei in the skeleton such that pgpert(ei) contains at least one
edge of p. The outer paths of pgµ project to outer paths of the skeleton of µ, i.e.,
the two paths from u to v in the skeleton that form the outer cycle of the skeleton.
We would like to find the outer path of the skeleton that is the projection of the
dominating outer path of pgµ to the skeleton.

Lemma 5.8. Let a clustered planar embedding Γ of the graph G and a corresponding
SPQR-tree be given. If there is a proper face fµ in sgµ with axis weight awfµ

=
maxµ then there is an edge e on an outer path of the skeleton with awe = maxµ.

Proof. The proper face f in pgµ that is the corresponding face to fµ also has
weight maxµ. Let C be the concatenation of the axes of the edges e′ that belong
to the outer cycle of sgµ. One of the edges of C must have weight maxµ , because
otherwise a face of this weight is separated by a cycle of smaller weight from the
outer face. Therefore one of the edges on the outer cycle of sgµ must have axis
weight maxµ. ¤

The dominating outer path of a skeleton graph sgµ is the projection of the dom-
inating outer path of pgµ into sgµ, i.e., an edge e of sgµ belongs to the dominating
outer path of sgµ if and only if pgpert(e) contains edges of the dominating outer
path of pgµ.

Lemma 5.9. A dominating outer path of sgµ can be determined as follows:

(1) If sgµ contains a proper face fµ with weight awfµ
= maxµ then an outer

path of sgµ containing an edge e with awe = maxµ can be selected as the
dominating outer path.

(2) If sgµ does not contain a proper face f with weight awfµ
= maxµ then

an outer path of sgµ containing an edge e with maxpert(e) = maxµ can be
selected as the dominating outer path.

Proof. We have to show that the selected outer path of sgµ is the projection of a
dominating outer path of pgµ into sgµ.

If sgµ contains a proper face of weight maxµ then Lemma 5.8 applies, i.e., there
is an edge e on one of the outer paths p′ of sgµ, such that awe = maxµ. This
path p′ is the projection of an outer path p of pgµ that also passes pgpert(e). If u
and v are the endnodes of e then p restricted to pgpert(e) is a path from u to v in
pgpert(e). Since awe = maxµ, p restricted to pgpert(e) passes an edge of weight ≥
maxµ. Since maxpert(e) ≤ maxµ, such an edge must have weight maxµ.

If sgµ does not contain a proper face of weight maxµ then we consider any edge
e of pgµ on an outer path of pgµ with weight maxµ. This edge e belongs to some
pgpert(e′) with e′ belonging to sgµ. Such a e′ belongs to one of the outer paths of sgµ,
and maxpert(e′) = maxµ. Now consider any e′ in sgµ that belongs to anouter path
with maxpert(e′) = maxµ. Let fµbe the proper face of sgµthat contains e′ and let f
be the corresponding face of pgµ. Since the weight of fµand therefore the weight of
f are smaller than maxµ, the dominating outer path of pgpert(e′) (which contains
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an edge of maxµ= maxpert(e′)) is not a subpath of the boundary of f . Therefore
the dominating path of pgpert(e′) is a subpath of a dominating path of pgµ. This
means that e′ is an edge of the projection of a dominating path of pgµ into sgµ.
Therefore the outer path of sgµ containing e′ can be taken as dominating outer
path of sgµ. ¤

The dominating outer path of sgµ now can be determined as follows:

(1) We determine the outer paths of sgµ. Note that a planar embedding of
sgµ together with the edge connecting the poles is known. The two faces
containing this edge determine the outer paths of sgµ.

(2) We check whether there is a proper face of sgµ with weight maxµ. Note that
each face is determined by the sequence of its boundary edges. The maxi-
mum axis weight of a boundary edge of any face can hence be determined
in linear time.

(3) We proceed as in Lemma 5.9 to determine the dominating outer paths.
Since we know the face weights and the maximum and axis weights of the
edges in sgµ, we can determine the maximum axis or maximum weight of
each outer path in linear time and hence perform this step also in linear
time.

As a result of this subsection, we get the following:

Proposition 5.10. If µ is a P- or R-node then a dominating path of sgµ can be
determined in linear time.

6. Computation of the Clustered Planar Embedding

In this section we show how the final clustered planar embedding can be com-
puted. Our final embedding has to satisfy the requirements of a normal form
embedding. We can assume from the results of the previous sections that the em-
bedding of each sgµ in the SPQR-tree is known. If µ is an S- or an R-node, we
are done, in the case of a P-node we compute the decreasing and increasing sub-
sequence of the parallel edges and sort both sets with respect to the axis weight.
We also know the dominating paths, i.e., we know if the left or right outer path of
sgµ is dominating.

Now we have to find the relative orientation of a child component sgν of sgµ.
Note that the axis in the pertinent graph of a skeleton edge e splits the pertinent
graph into two parts. We have to guarantee that for each face f incident with e, for
the part that in the final embedding will be turned in direction of f , its maximum
weight is at most the axis weight of f . Otherwise the part Pmax with the higher
maximum weight would be enclosed by a circle with edge weights bounded by the
axis weight of f . We therefore have to check if we have to swap the embedding of
sgpert(e). This can be done by first computing the relative orientation of a child
component within its parent component by a bottom-up traversal of the SPQR-
tree, followed by a top-down traversal that uses the relative orientations to compute
the absolute orientation as follows:

For each node ν in the SPQR-tree, we store an orientation value or(ν) that spec-
ifies the relative embedding of a child component sgν within its parent component
sgµ. If e is an inner edge of sgµ then we have to swap sgpert(e) if the part Pmax is
directed to the face of smaller axis weight. If e is an outer edge, and µ is not an
S-node, then sgpert(e) has to be swapped if the incident face f different from the
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outer face has smaller axis weight than the weight of Pmax and Pmax is directed
to this face or f has an axis weight that is at least the maximum weight in Pmax

and Pmax is directed to the outer face of sgµ. If µ is an S-node, the parts with the
larger weight are directed in the same direction.

Now we know for each child component its relative embedding within its parent
component. We can derive the absolute orientation abs(µ) just by checking how
often a component would be swapped either directly or by swapping an ancestor
component. If there is an odd number of swaps, the component needs to be swapped
in order to achieve the correct final orientation. We therefore only need to compute

abs(µ) := Π(ν ancestor of µ in SPQR−tree) ∨ (ν=µ) or(ν)

which can be done in linear time by a top-down traversal.

Let embµ be the original embedding of sgµ. Then

embfinal
µ :=

{

embµ, if abs(µ) = 1

reversal of embµ, if abs(µ) = −1

The final embedding embfinal of G can be defined as follows: We determine the
embedding embpre

µ of pgµ recursively knowing the embeddings embpre

pert(ei)
of the

pgpert(ei) for all ei in sgµ and the embedding embfinal
µ of sgµ.

embpre
µ is determined as follows: For a skeleton edge e in sgµ with incident

vertices u and v in embfinal
µ , in the clockwise enumeration of the incident edges of

u and v in sgµ, e is replaced by the edges of pgpert(e) that are incident with u, and
with v, respectively. They appear in embpre

µ in the same order as in pgpert(e). After
processing all nodes in the SPQR-tree, we know the embedding of the root node
and therefore we can derive the embedding for the graph G. We finally insert the
root edge connecting the poles u and v of the root node between the first and last
edge of u and v, respectively, and get an embedding for the input graph G that
satisfies the requirements of a normal form.

6.1. How to Derive the Normal Form Efficiently. If v is a vertex in G, a
node in the SPQR-tree T whose skeleton contains v is called an allocation node of
v. The allocation nodes of v form a subtree Tv of T and if v is not a pole of the root
of the SPQR-tree, then the root of Tv is the only node µ of Tv such that v is not a
pole of µ, otherwise the root of Tv is the root of T . Note the the number of roots
of the trees Tv is equal to the number of vertices in G. The number of non-root
nodes is also linear in the size of G, because each node µ appears as non-root node
in at most two trees Tu and Tv where u and v are the poles of µ, and the size of the
SPQR-tree of a planar graph is linear in the number of nodes of the graph. We can
therefore determine the trees Tv by a traversal of the SPQR-tree in linear time.

We use the trees Tv to efficiently determine the final embedding embfinal of
G. We may assume that the embeddings embpre

µ are known, where embpre
µ is the

projection of a normal form embedding embfinal of G into sgµ.
We call a vertex v an inner vertex of sgµ, if v belongs to sgµ, but is not a pole

of µ. For each inner vertex v of sgµ, embpre
µ determines the cyclic enumeration of

the edges incident with v in sgµ. For each pole of µ, we have a cyclic enumeration
of the edges incident with v where the first and last edge are fixed. Therefore we
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have for each node µ of Tv an enumeration of the children of µ that corresponds to
the clockwise enumeration of the edges of sgµ incident with v.

The leaves of Tv are just the Q-nodes representing edges that are incident with
v (except for the special case if v is a pole of the root of the SPQR-tree). We
determine a postorder of the nodes in Tv and restrict this order to the leaves of
Tv (plus the root if necessary). This gives us exactly the enumeration of edges
incident with v as in embfinal, because if e1, . . . , ek is the enumeration of edges
incident with v in sgµ that corresponds to the embedding embpre

µ then in embfinal

the edges of pgpert(e1) are enumerated first, the descendants of pgpert(e2) second and
so on, which is also true for the post order enumeration of Tv.

Therefore we get the following result:

Theorem 6.1. The normal form embedding embfinal of G can be determined in
linear time if the axis and maximum edge weights and the SPQR-tree are known.

Proof. A postorder traversal can be done in linear time. Selecting and renumbering
the leaves can be done in the same time bounds (for each leaf of Tv, determine the
number of leaves of Tv with a smaller postorder number).

¤

6.2. Checking Clustered Planarity of the Final Embedding. At this point
we have an embedding embfinal of G that is a normal form embedding. We know
that this embedding is a clustered planar embedding if and only if G has a clustered
planar embedding. We check this using Theorem 3.1 as follows:

We determine a spanning tree TF of the dual graph of G such that TF restricted
to the sets Fi (see Section 3) is a spanning tree of (Fi, Ei) for each i. The existence
of such a spanning tree is equivalent to the statement that any (Fi, Ei) is connected.
Therefore, by Theorem 3.1, the fact that TF restricted to Fi is a spanning tree of
(Fi, Ti) for each i, is equivalent to the statement that embfinal is a clustered planar
embedding.

Let F=i be the set of faces of weight i and E=i be the set of edges of weight i.
Clearly, if i is the maximum weight of an edge of G, then F=i = Fi and E=i =
Ei and, in a clustered planar embedding, such a (F=i, E=i) therefore has to be
connected. If i is not the maximum weight, then in a clustered planar embedding
for each connected component C of (F=i, E=i) there is an f ∈ F=i and an f1 ∈ Fi+1,
such that f and f1 share an edge of weight i. If there is no such edge of weight ≥ i,
then (Fi, Ei) would not be connected. As the maximum weight of an edge at the
boundary of f is i, the weight must be exactly i. We compute the spanning tree
TF as follows:

(1) Determine the connected components of (F=i, E=i) and the spanning trees
TC for each of these components.

(2) For each connected component C of some (F=i, E=i) with i not maximum
edge weight, try to determine an fC ∈ C and an f1,C of weight > i, such
that fC and f1,C share an edge eC of weight i.

(3) TF consists of the edges of the trees TC and the edges eC .

The computation steps obviously can be done in linear time. Regarding the
correctness, we show the following:

Proposition 6.2. TF is a tree if and only if the given embedding embfinal is a
clustered planar embedding.



PLANARITY TESTING FOR C-CONNECTED CLUSTERED GRAPHS 25

Proof. Using Theorem 3.1, we show that TF is a tree iff for each i, (Fi, Ei) is
connected. We use the following auxiliary result.

Lemma 6.3. TF is a tree if and only if for each nonmaximum weight i and each
connected component C of (F=i, E=i), the tree edge eC of weight i and with incident
faces fC in C and f1,C with weight greater than i exists and for the maximum edge
weight i in G, (F=i, E=i) is connected.

Proof. TF restricted to each component C of some (F=i, E=i) is a tree. therefore
TF is a tree if and only if TF remains a tree if we contract each such component
C to a node. After contraction of these connected components, TF is a forest and
only the edges eC remain. Therefore TF is a tree iff for all but one component C,
the edge eC is defined. For components C of (F=i, E=i) with maximum weight, eC

is not defined. Therefore TF is a tree iff there is exactly one connected component
of the (F=i, E=i) of maximum weight and for each nonmaximum weight i and each
connected component C of (F=i, E=i), eC is defined. ¤

Now we assume that TF is a tree. We root TF as follows: For each nonmaximum
weight i in G and each connected component C of (F=i, E=i), we take fC as root
of TF restricted to C. The parent of fC is f1,C . For the maximum weight i we
take any f ∈ F=i as root. The weight of the parent of f is at least the weight of
f and the weight of the edge joining f and its parent is the weight of f . Therefore
TF restricted to Fi is a spanning tree of (Fi, Ei) and therefore (Fi, Ei) is connected
for each i. Vice versa, if for each i, (Fi, Ei) is connected then we know from the
discussion above that for each connected component C of (F=i, E=i), there is an
edge eC with weight i at the boundary of some face f ∈ C and of another face f ′

of weight > i. We chose one such edge as edge of TF and obtain a tree. ¤

6.3. Complexity Analysis. An SPQR-tree for a given biconnected graph can be
constructed in linear time [11]. The recursive procedure to compute the maximum
weights needs linear time with respect to the size of the SPQR-tree and therefore
also linear time with respect to the size of the graph G. From Proposition 5.4 we
know that the axis weights can be determined in linear time.

The computation of the embeddings of the skeleton graphs can be done in linear
time. For the P-nodes we need to sort the subsequences of the parallel edges, but as
they are sorted by their axis weights, this can be done in linear time, too. The face
weights are determined by the computed axis weights and the computation of the
dominating paths can be done in linear time by Proposition 5.10. After obtaining a
normal form embedding, we can check in linear time, if it is clustered planar, which
is true if and only if the clustered graph is clustered planar.

We get the following main result:

Theorem 6.4. If G is a biconnected graph then we can check in linear time whether
C = (G,T ) has a clustered planar embedding and we can construct such a clustered
planar embedding within the same time bound.

6.4. Extension to Connected Graphs. We give a sketch of how to extend the
algorithm to the case of connected graphs. A connected, but not biconnected graph
G can be decomposed into its biconnected components in linear time [12, 15].

We select in G an edge e of maximum weight and consider the block br containing
e as root of BT . This defines, for every other block and each vertex b, a parent
P (b) of b in BT .
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The algorithmic idea now is as follows:

(1) We determine clustered planar embeddings embb of each of the blocks b,
such that the parent P (b), which has to be a vertex, appears at the outer
face.

(2) Let v be the parent of a block b and b′ the parent of v, i.e., v separates b
and b′. We embed b into a face f of b′ that contains v as boundary vertex
and has a weight that is at least as large as the maximum weight of an edge
in b or a descendant of b.

To guarantee that the weight of a face into which a block is embedded is large
enough, we redefine the maximum weights.

(1) We define weights of vertices. Note that the decision to embed a block
b into a certain face f means that all descendants of b in the block tree
are enclosed by the face boundary of f , too. The weight of a vertex v is
therefore defined as the maximum weight of an edge that appears in a block
that is a descendant of v in BT .

(2) Let µ be a node in the SPQR-tree of block b. The axis weight is defined
as before. The maximum weight of µ is the maximum weight of an edge of
pgµ or an inner vertex of pgµ (i.e., a vertex different from the poles of µ).

(3) If maxµ is the weight of an edge of pgµ then the dominating path of pgµ is
the outer path containing such an edge. If maxµ is instead the weight of an
inner vertex of pgµ , then the dominating outer path is one that contains
an inner vertex of pgµ of maximum weight.

We can determine maxµ in the same recursive manner as in the biconnected
case. We determine the weights of the vertices and the maximum weights of the
skeleton edges and select the maximum of these weights as maxµ.

The next step is to determine the normal form embeddings of all the blocks b.
It is obvious that each vertex v appears as boundary vertex of some face of b that
has a weight that is at least as large as the weight of v. In particular, this is true
for the parent P (b) of block b. The weight of P (b) is at least the maximum over all
vertex and edge weights of b. Therefore P (b) appears at a face of maximum weight
of b, this face can then be taken as outer face of b.

After determining the embeddings of all blocks, we embed each block b into the
face of the parent of P (b) of largest weight that has the vertex P (b) at its boundary.
This defines the final embedding. The time bound is the same as in the case of
biconnected components.

7. Future work

The question how to decide c-planarity of general, possibly non-c-connected clus-
tered graphs is still open. If the underlying graph is connected, we can still use the
concept of faceweights, but we have to take care about edge-region crossings.
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